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SMART GRID RELIABILITY ASESSMENT UNDER VARIABLE 

WEATHER CONDITIONS 

Arif Islam 

 
ABSTRACT 

 
The needs of contemporary electric utility customers and expectations regarding energy 

supply require dramatic changes in the way energy is transmitted and delivered. A smart 

grid is a concept by which the existing and aging electrical grid infrastructure is being 

upgraded with integration of multiple applications and technologies; such as two way 

power transfer, two way communication, renewable distributed generation, automated 

sensors, automated & advanced controls, central control, forecasting system and 

microgrids. This enables the grid to be more secure, reliable, efficient, self-healing, while 

reducing greenhouse gases. In addition, it will provide new products & services and fully 

optimize asset utilization. Also, integration of these innovative technologies to establish a 

smart grid poses new challenges.  

 

There will be need for new tools to assess and predict reliability issues. The goal of this 

research is both to demonstrate these new electrical system tools and to monitor and 

analyze the relationship of weather and electrical infrastructure interruptions. This goal 

will be accomplished by modeling weather and distribution system reliability issues, by 

developing forecasting tools and finally developing mathematical models for system 
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availability with smart grid functionality. Expected results include the ability to predict 

and determine the number of interruptions in a defined region; a novel method for 

calculating a smart grid system’s availability; a novel method for normalizing reliability 

indices; and to determine manpower needs, inventory needs, and fast restoration 

strategies. 

 

The reliability of modern power distribution systems is dependent on many variables 

such as load capacity, renewable distributed generation, customer base, maintenance, age, 

and type of equipment. This research effort attempts to study these areas and in the 

process, has developed novel models and methods to calculate and predict the reliability 

of a smart grid distribution system. A smart grid system, along with variable weather 

conditions, poses new challenges to existing grid systems in terms of reliability, grid 

hardening, and security. 

 The modern grid is comprised of various distributed generation systems. New methods 

are required to understand and calculate availability of a smart grid system. One such 

effort is demonstrated in this research. The method that was developed for modeling 

smart grid dynamic reconfigurations under variable weather conditions combines three 

modeling techniques: Markov modeling, Boolean Logic Driven Markov Process (BDMP) 

and the modeling of variable weather condition. This approach has advantages over 

conventional models because it allows complex dynamic models to be defined, while 

maintaining its easy readability. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background of the Study 

A smart grid modernizes electrical transmission and distribution networks to 

provide customers with dual-direction electricity that is secure, reliable, distributed and 

has reduced emissions. Smart grids use two-way communications, advanced controls, 

modern sensors, and micro-grids in conjunction with central station generation and 

distributed networking servers/computers to improve efficiency, reliability and safety of 

power delivery as well as prudent use of energy. Smart Grid is also referred to as Smart 

Power Grid, Smart Electric Grid, Intelligrid, and FutureGrid. 

 Electrical power systems include a network of power plants, power lines, 

substations, distribution lines and consumers. The next generation of power system smart 

grid will be achieved when a variety of important technologies, including smart meters, 

electronic sensors, electronic controls, renewable energy sources and energy storage 

elements are incorporated into one system that will afford automatically correct power 

supply variability; distribute clean generation and storage; and maintain system reliability 

at all times under all conditions. The benefit of a smart grid is that it provides an 

instantaneously, accurate flow of information, eliminating cumbersome layers of tedious 

manual decision-making by system operators. Instead, a smart grid automates the 

complex network of devices that control flow of electricity to work together faster, more 
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efficiently and with a level of precision that is not possible using manually operated 

systems.  

The effects of weather, from heat waves to hurricanes, on the electrical 

infrastructure are expected to escalate world-wide. Associated power interruptions create 

economic hardships of several billion dollars annually on the state and its citizens, while 

also posing a significant threat to public safety. The economic impact and threat to public 

safety will surely escalate as the population increases, resulting in a steadily increasing 

demand on electrical infrastructure. Consequently, electrical infrastructure is fragile; as 

each adverse weather system passes over the state, supplying energy and restoring service 

becomes more difficult. Electrical infrastructure is considered to be the most complex 

system ever developed by mankind, and it will take decades to update. An energy plan 

that incorporates a diversified portfolio of generation sources, from central-station to 

renewable and distributed, will not become reality if electrical infrastructure is not 

appropriately developed in conjunction with energy supply.  

Smart grid will allow the current electricity system to incorporate better 

renewable energy sources such as wind and solar power. The benefits of a smart grid 

include increased efficiency of the current electrical infrastructure, reduced greenhouse 

gas emissions, and reduced consumer costs. Successfully incorporating renewable 

electricity sources into existing power transmission and distribution systems requires 

wide-area deployment of smart grid technology. The goal of a smart grid system will be 

to optimize supply and delivery of electrical energy, minimize losses, “self heal”, enable 

maximum use of renewable energy resources and substantially increase energy 

efficiency. 
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It will also improve penetration of renewable distributed generation into the grid 

system since it has a faster response to intermittent power and keeps electricity supply in 

absolute balance with consumer demand at all times. As a result, far less storage capacity 

will be required to keep the power system from failing. In addition, a smart grid can 

protect users when renewable sources are not operating at optimal generation. It also will 

enable each transmission and distribution line to carry much more electricity without risk 

of overloads and blackouts during high generation periods. Finally, a smart grid will 

enable consumers to control the cost and quality of their electricity service better with 

absolute convenience.  

Smart grid engineering is divided into planning and design stages. The planning 

stage is to identify system needs and limitations, propose projects, resolve issues and 

obtain project approvals. The design stage takes a project from concept to final 

realization. Smart grid technologies are expected to change fundamental design and 

operating requirements of the electric power system. The primary engineering tools for 

Smart grid analysis and design are power flow and fault-current studies. A power flow 

analysis computes steady state voltages and currents of the systems, ensuring that the 

system will meet criteria of equipment loading, voltage drops and system losses. While 

power flow modeling can predict electrical properties of the smart grid, reliability 

modeling predicts the system’s availability and interruption. Reiterating, a smart grid will 

allow current power electrical systems to incorporate better renewable energy sources 

such as wind and solar power, back-up distribution generators and energy storage 

systems. 
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Dependability of the smart grid is one of the most important areas of reliability 

theory application. Random failures are certain to occur from time to time, especially 

when weather extremes or other causes present hazards that the power system was not 

designed to withstand. Reliability methods provide important analytical tools that can be 

used to evaluate and compare smart grid design and performance. Each component has its 

unique characteristic. Models should be as simple as possible, but they need to represent 

all features critical to system reliability. Reliability parameters vary from component to 

component or from situation to situation. Component reliability data are one of the most 

important parameters of smart grid reliability assessment. Smart grid reliability 

information is based on historical utility data and manufacturer test data, as well as 

technical conferences and peer reviewed literature such as IEEE, International Journal of 

Power and Energy Systems and Cigre .Electrical equipment reliability data usually are 

obtained from surveys of individual industrial equipment failure reports. Collection of 

reliability data are a continual process; data is constantly updated.  

Reliability of power distribution systems is dependent on many variables such as 

load capacity, customer base and maintenance, as well as age and type of equipment. 

However, the variable most often responsible for degraded reliability is weather, and 

common weather conditions often are overlooked in reliability analyses. These conditions 

include, but are not limited to, rain, wind, temperature, lightning, humidity, barometric 

pressure, snow and ice. 

During an interruption, customers within a community are able to intentionally 

island, thus reconfiguring total loads to only critical loads while meeting critical loads by 

managing renewable energy sources and the energy storage system. One objective of this 
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study is to evaluate reliability improvement associated with this optimal structure of the 

power system. Enhancement in reliability will be quantified in terms of proposed new 

reliability indices that are pertinent to commercial-residential communities that contain 

renewable energy systems along with energy storage systems. 

Common weather does not include catastrophic events such as hurricanes or 

tornados “which exceed reasonable design or operational limits of the electric power 

system” [1], and for which there are methods in place, or being studied, to define major 

reliability events, including weather events, and excluding the consequent interruptions 

from the calculation of reliability indices [2, 3, 4]. 

Much of the focus of modeling the effects of weather on power distribution 

systems has remained fixated on extreme weather conditions [5, 6, 7]. A body of work 

including weather as a factor in the analysis of specific fault causes also exists [8-13]. 

However, models that use the combined effects of common weather conditions to predict 

the total number of daily or by-shift interruptions are presently not available. 

There is a need for methods that can predict daily or by shift power distribution 

system interruptions based on common weather conditions, and for interruption risk 

assessment based on immediate weather conditions. A related method of normalizing 

reliability indices for common weather conditions also is needed to improve reliability 

assessments of power distribution systems. 

Dynamic reconfigurations of the smart grid and variable weather conditions create 

difficulties in reliability modeling and analysis. To overcome these obstacle, a method 

combining three modeling techniques has been developed. The techniques include: 

Markov modeling, Boolean Logic Driven Markov Process (BDMP) and Modeling of 
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variable weather conditions. This modeling approach enjoys advantages over 

conventional models because it allows complex dynamic models to be defined while 

remaining easily readable.  

1.2 Objective and Scope of the Research 

Reliability analysis is stochastic and predictive in nature. The goal of a 

distribution system reliability tool must be to provide consistent, accurate comparisons 

between competing design options. In this effort, conduct unique research to find out the 

effects of smart grid infrastructure and variable weather conditions over the reliability of 

a smart grid. A mathematical concept/tool would be utilized to scientifically obtain 

results and develop conclusions and recommendations for future work. The research has 

importance because, at present, worldwide investments are taking place both to 

modernize grids and to bring smart grid technologies to grids hoping that there will be 

improvement in reliability in terms of failures of the system.  

The main objective of this research is to develop models and methods for smart 

grid reliability assessment under variable weather conditions. Applying different 

reliability modeling techniques and approaches to solve the present obstacles for smart 

grid reliability modeling and calculations:  

• Based on common weather conditions, a theoretical model can be used for the 

prediction of power distribution interruptions and for interruption risk assessment 

based on immediate weather conditions. Using daily and hourly weather data, 

these models will be used to predict the number of daily or by shift interruptions 

and to normalize the reliability indices for weather.   
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• The method for normalizing reliability indices for common weather conditions 

has been developed. Power companies are constantly striving to improve their 

reliability performance and one method commonly used to identify changes in 

performance is a comparison of present performance with past performance. Such 

methods are often not accurate due to changing weather conditions which can 

skew the figures used for comparison. The present method diminishes the impact 

of common weather conditions and makes comparisons that allow for a more 

accurate determination of reliability performance. 

• Model dynamic reconfigurations of the smart grid under variable weather 

condition combining modeling techniques: Markov modeling, Boolean Logic 

Driven Markov Process (BDMP) and Modeling of variable weather condition.  

1.3 Main Contributions  

The main contributions made by this research are the development and 

application of original models and methods for reliability assessments of smart grids 

under variable weather conditions:  

• Method for modeling smart grid dynamic reconfigurations under variable weather 

conditions combining the aforementioned three modeling techniques( Markov 

modeling, Boolean Logic Driven Markov Process (BDMP) and the modeling of 

variable weather conditions).  

• Developed a method of predicting power distribution interruptions in a given 

region based on common weather conditions and assessing the risk of 

interruptions on immediate weather conditions. Using daily and hourly weather 

data, the method predicts the number of daily or by shift interruptions. 
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• Developed is the method for normalizing reliability indices for common weather 

conditions. The methods commonly used are based on changes and comparison of 

present and past performance. The developed method diminishes the impact of 

variable weather conditions and makes comparisons that allow for a more 

accurate determination of reliability performance. 

• The predictor method that will reduce the downtime of power interruptions by 

proper distribution of the service work force is developed. The model offers an 

economical tool with negligible maintenance costs to utilities, and improves its 

Systems Average Interruption Frequency Index (SAIFI) while increasing its 

power transmission.   

• The research improves reliability assessments by using hourly (or half-hourly) 

weather data, and reorganizing the interruption data that are reported by 

substations into datasets that are geographically centered on ASOSs. 

1.4 Outline of Dissertation   

This dissertation is divided into eight chapters. Chapter 1 is the introduction and 

explanation of the study objective. Chapter 2 is an introduction to the smart grid. This 

chapter introduces the important technologies being brought to electricity grid 

infrastructure to improve efficiency and reliability. Since modernization of the 

electrical grid is taking place as this document is written, the studies done over such a 

novel system are still unique. Chapter 3 documents in detail the research effort to model 

various weather parameters affecting the reliability of modern distributed systems. It 

provides the design of the models on which the predictor will predict the number of 

interruptions (N) in an area. It starts with the modeling of effects of individual weather 
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parameters, then slowly builds the combined effect model. Chapter 4 introduces typical 

tools used in smart grid reliability evaluation: Probability Distribution Functions, 

Component Reliability Parameters, Component Reliability Data, and Smart Grid 

Reliability Indices. Chapter 5 develops and documents a novel method to normalize 

reliability indices for common weather conditions. Chapter 6 is a brief introduction 

modeling methods of smart grid and the modeling techniques used in this research. 

Chapter 7 is a practical application of the proposed method on different smart grid 

configurations including: system with a distribution generator, system with a photovoltaic 

source and energy storage, system with wind generator and energy storage under variable 

weather conditions. Chapter 8 draws conclusions and proposes future research efforts. 

1.5 Publications Related to this Research 
The following section provides a list of publications submitted, published and 

presentations made related to the topic of research: 

• “Electric Power Distribution System Reliability Modeling and Risk Assessment”, 

A. Islam, A. Domijan Jr.,  W.S. Wilcox, IEEE Transactions on Power Delivery, 

2010 

• “Statistical Normalization of Reliability Indices for Common Weather 

Conditions”, A. Islam, A. Domijan, W. S. Wilcox, IEEE Transactions on Power 

Systems, 2010 

• “Reliability Evaluation Method for a Dynamic Smart Grid System”, A. Islam, A. 

Domijan, Jr., A. Damnjanovic, International Journal of Power & Energy Systems,   

2010 
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• “Smart Grid Reliability Assessment”, A. Islam, A. Damnjanovic, A. Domijan, Jr., 

PES conference, International Association of Science and Technology for 

Development (IASTED), 2010 

• “Price Responsive customer screening using load curve with inverted price tier”, 

A. Domijan Jr., A. Islam., M. Islam, A. Miranda, A. Omole, H. Algarra, TECO 

load research and forecasting team, International Journal of Power & Energy 

Systems, 2010 

•  “Weather & Reliability”, A. Islam, A. Domijan, Jr., 2007 PES General Meeting, 

IEEE Power Engineering Society. 

•  “Modeling the Effect of Weather Parameters on Power Distribution 

Interruptions”, A. Domijan, Jr., A. Islam, W.S. Wilcox, R.K. Matavalam, J.R. 

Diaz, L. Davis, and J. D'Agostini, presented & published(ISBN 0-88986-449-7) at 

the 7th IASTED Int. Conf. Power and Energy Systems, Clearwater Beach, Fl, 

USA, Nov. 2004  

• Panelist for Electricity Grid Infrastructure Research—Current and Future 

Developments at 2007 IEEE PES conference Tampa FL USA 

• Paper presentation at 2007 IEEE PES conference Tampa FL USA 

• Chaired a session “SESSION 11 – Power System Control And Operations”, 

Chairs: A. Islam (USA) and M. Paloranta (Finland) at 7th IASTED Int. Conf. 

Power and Energy Systems, Clearwater Beach, l, USA,   Nov. 2004   

• Posters at UF & USF 
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CHAPTER 2: SMART GRID: MODERN POWER SYSTEMS 

 

In order to meet contemporary needs of consumers, changes have to be made in 

production, distribution, and consumption of electricity. The utility industry is one of the 

largest industrial sectors in the field of technology. In the United Sates, it has a combined 

asset exceeding trillions of dollars. There are more than 3,273 utilities in the United 

States, providing electricity to over 131 million customers [14]. The primary goal of 

these utilities is to provide reliable and efficient electricity to consumers. Even with the 

highest quality of utility services, direct and indirect losses attributed to power 

interruptions are tremendous. 

2.1 The Need to Overhaul Aging Grid Systems 

The national cost of power interruptions is approximately 80 billion dollars 

annually [15]. In the last 40 years, hundreds of blackouts have occurred in the United 

States, with the majority occurring in the last 15 years. The main cause of such massive 

failures is attributed to the use of archaic mechanical systems, which cannot 

accommodate modern heavy demands for power. Moreover, by improving the efficiency 

of the grid by a mere 5%, emissions can be reduced by an amount that equates to taking 

53 million cars off the road [16]. Reliability indices such as System Average Interruption 

Frequency Index (SAIFI), System Average Interruption Duration Index(SAIDI) and 

Cumulative Average Interruption Duration Index(CAIDI) have all increased in the last 

decade. SAIDI has increased by more than 20% for the 55 utilities that data were made 

available to from the department of energy, as shown in figure 2.1. 
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Figure 2.1. Trends for 55 Utilities Providing Data Between 2000-2005 (IEEE 2006) [17] 

In order to respond to increasing demand for electricity and harmful effects of 

greenhouse gases, the current grid system needs to be upgraded. Funding is crucial in 

implementing such large scale changes in the grid system. The power industry is very 

significant in the United States economy. It is one of the largest and most capital-

intensive sectors in the U.S. economy, 60% of which is invested in power plants, 30% in 

distribution facilities, and 10% in transmission facilities. In order to maintain America’s 

global competitiveness, electric power needs to be reliable.  

In the past 4 or 5 decades, no significant changes occurred in overall 

infrastructure of the transmission and distribution system of electricity. Recently, the US 

government started developing various programs. The goals of these programs are to 

provide everyone access to abundant, affordable, clean, efficient, and reliable electric 

power anytime and anywhere.  
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2.2 Modern Power Systems and Smart Grids 

 Smart grid is a modern electrical transmission and distribution network system 

that provides customers secure and reliable electricity. The advantages of smart grids are: 

two-way communications, advanced controls, modern sensors, micro-grids, and central 

station generation, which improve the efficiency, reliability, and safety of power delivery. 

Smart grid is also referred to as "Smart Power Grid," "Smart Electric Grid," "Intelligrid," 

"FutureGrid," and FRIENDS (Flexible Reliable Intelligent Energy Delivery System).  

 

Figure 2.2. Smart Grid Technologies and Benefits 

The smart grid is an integration of many technologies that modernize the 

electrical grid infrastructure. Major areas and technologies are Advanced Metering 
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Infrastructure, distributed renewable generation, predictive and central control (diagnostic 

center), demand side management and bi-directional flow of energy. Modernization of 

power systems can be achieved by integration of renewable and other distributed energy 

generation systems. This results in advanced sensors, communication and control 

technologies, monitoring, diagnostic and automation capabilities, and two-way 

communication between the utility and electric loads. Benefits of such implementations 

are that these technologies provide improved grid reliability & efficiency, increased 

security and power quality, reduce restoration time, new products and services to 

customers, optimization of asset utilization, and improved energy security. In a situation 

where there is an outage at the feeder level, the full capability of the grid can be utilized 

by integration of Distributed Generation (DG) in a smart grid, Demand Response, VAR 

control, and Distribution Automation. Other key benefits include achieving increased 

customer reliability under system contingencies and outage conditions without additional 

feeder construction, and demonstrating the opportunity to revolutionize distribution 

systems globally through the integration of technologies. The distribution system is 

expected to be flexible and responsive to system contingencies, such as peak loading due 

to weather, loss of generation capacity, equipment failures, and natural disasters. 

Utilities have excess power generating capabilities during off-peak hours when 

consumers are utilizing less energy. Two sites were developed in St. Petersburg, Florida 

to test the modern storage systems with live connectivity to the grid and power generation 

via solar panels. The site is called SEEDS (Sustainable Electric Energy Delivery 

Systems). The renewable SEEDS project uses excess energy to charge a 5KW Advanced 

Energy Storage System (AESS). AESS is a battery system with modern communication 
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features and grants users control over the rate of charging and discharging, which allows 

storage of energy for future use. It is expected that car users would charge their PHEV at 

off peak times for the grid. This would require additional informational flow to electric 

consumers about OFF and ON peak demand times and duration. 

The Renewable SEEDS project has solutions for these issues. The Renewable 

SEEDS site(s) can act as modern power stations to charge PHEV anytime. The site uses 

the excess off peak energy to charge already installed 5 KW AESS. In addition, during 

peak daytime hours, there is a 2KW solar panel (possible expansion to 5KW) which 

charges the battery. The excess energy will then be stored for future use for PHEV’s. The 

results of SEEDS demonstrated that the peak load shaving is possible by storing the 

intermittent renewable energy into AESS and delivering it at the peak power requirement, 

which is typically in the afternoon for the summer and early morning in the winters in the 

south Florida region. 
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Figure 2.3. Illustrating Renewable SEEDS with PHEV Load/Station Center 

With introduction of distributed generations and two way power flow; complexity 

of the systems involved increases enormously. Methods to assess reliability and have 

some kind of predictive system are necessary. The smart grid has the capability to 

respond to these issues. The unpredictability of the system can be improved by 

implementing a predictive system across the electrical distribution system. Smart grid can 

improve reliability, predict interruptions, reduce down times, maximize resource 

management, and assist in self-healing of the network. Submitted in this document is a 

novel model (patent of USF) that implements this system. 

Effects of weather (e.g. rain, heat waves, hurricanes) on the electrical 

infrastructure are expected to escalate globally. Power interruptions are economic 

16                                                                                               

 



www.manaraa.com

17                                                                                               

 

hardships that cost several billion dollars annually. The current electrical infrastructure 

does not have the capacity to control the effects of power interruptions.  

2.3 Expectations from Modern Power Systems and Smart Grid  

Despite the large amount of time spent in selecting various technologies for smart 

grids, the main goal of providing wealth to customers and investors should not be 

neglected. Continuous updates and feedback from customers are necessary. The main 

point is that the utility industry is full of experts who know  instruments and products, but 

the consumer angle is often lost. Understanding customer’s needs and requirements is 

important to appreciate efforts put into implementing a complex system such as the smart 

grid.  

 An important challenge for the utility industry is to endure declining growth. The 

utility industry is high in capital investment; thus, opportunities for grid electrification 

need to be maximized. With advent of modern PHEVs (Plug in Hybrid Electric Vehicle), 

opportunities are present to develop interfacing and billing systems that charge PHEV at 

every home in the country. Another interesting opportunity is to develop modern/smart 

appliances for modern grid system. Expectations from smart grid are to: 

• Provide new products, services, and markets. 

• Optimize asset utilization and operate efficiently.  

• Predict and respond to system disturbances (self-heal) 

• Be rugged against man-made and natural disasters. 

• Address modern customer expectations. 

• Involve active participation from the customer. 
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• Make available bi-directional, reliable, and environmentally friendly power for 

needs of the 21st century (nano/digital economy). 

• Involve all generation, transmission, distribution, and storage options.  

The challenges associated with these expectations are: 

• One of the main results expected from smart grid implementation is the 

fulfillment of modern day customer needs, which is to maximize stakeholders 

wealth. 

• Focus was initially not on customers due to hardware and technology concerns in 

initial stages of system implementation.  

• Trend of declining growth, maximizes opportunities of grid electrifications. 

• Develop modern/smart appliances for modern grid system: the last mile solutions 

2.4 Smart Grid’s Main Methodologies, Strategies, and Processes  

Smart grid is an integration of multiple technologies, methodologies, and 

processes, layered and combined together to provide efficient, reliable, secure power and 

user friendly interface to consumers. Smart grid technologies can be divided into major 

areas: Advanced Metering Infrastructure, Home Area Network, Distributed Generation, 

Plug-in Hybrid Electric Vehicles, Transmission/Substation , Distribution System 

Enhancements, Central Control Center, and Cyber Security. Following section provides 

an overview of these technologies. 

2.4.1 Advanced Metering Infrastructure (AMI)  

The overall objective of Advanced Metering Initiative is to provide a foundational 

communication platform that is robust, reliable, and secure. This platform can then be 

utilized to provide full 2-way communications to field devices including meters, devices 
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in customer’s homes, distribution system assets, and other applications [18]. Deployment 

of AMI in service territory focuses on collecting and providing data for every meter in 

the service area. AMI deployment includes foundational meter deployment and aspects to 

fully test the inclusion of in-home devices. AMI will create a base platform through a 

replicable model that demonstrates and quantifies benefits of smart grid deployment. 

With AMI in place, there will be quantifiable results of its impact on consumer energy 

usage and conservation. Included are: new rate and pricing options, utility system 

reliability and power quality, optimization of asset utilization and operating efficiencies, 

system disturbances and the ability for self-healing, and resilience against physical and 

cyber attacks. Installation of AMI is the first step required to enable other aspects of 

smart grids to be fulfilled.  

2.4.2 Home Area Network and New Products and Services   

The Home Area Network (HAN) provides customers with tools, technologies, and 

billing rates in the conservation effort of energy consumption [19, 20]. Until now, energy 

is consumed before the customer knows what the total monthly charges are. Advance 

notice of expected energy consumption and possible cost empowers customers to make 

informed decisions and actions regarding their energy usage at own home. Various 

demand side management concepts are attempted to harness the benefits of smart grid 

technology [21]. This will drive significant economic benefits to all customers through 

decreased energy bills. A parallel effort is ongoing to develop home appliances and other 

items that can easily communicate with AMI meters. This would enable control of such 

appliances from remote locations, and along with the help of advance communication 

setups, consumers will have better control over energy expenditure. 
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2.4.3 Distributed Generation  

The past decade has seen an enormous increase in the number of distributed 

generation resources. Most of these resources work in isolation and have no or very 

limited connectivity with the electric grid. With advent of smart grid technologies, these 

distributed resources can be brought onto the grid, thus reducing capital investment to 

build more power plants and avoiding creation of more green house gases. Integration of 

distributed generation technology onto the grid [22, 23] will enable renewable generation 

to interact with the electric grid, specifically for power generation, power quality, 

reliability, and customer interaction. This also helps quantify environmental benefits of 

renewable energy generators. Renewable generation will create and support more jobs in 

the “green” technology field. This area analyzes the following: 

• Advanced grid planning and operations needed for large-scale integration of 

distributed renewable systems into the distribution system.  

• Impact of high-penetration renewable generation such as photovoltaics on the 

utility grid.   

• Voltage regulation issues caused by the interconnection of various penetration 

levels of renewable generation on the distribution system. 

• Energy storage (batteries) and controls systems. 

2.4.4 Plug-in Hybrid Electric Vehicles (PHEV)  

PHEV provides tremendous benefits in reducing carbon emissions, since power 

plants are relatively more efficient than individual cars working on mechanical engines. 

Technologies are ready for implementations, wherein the consumer can charge the 

electric vehicle at home. Various efforts are ongoing to establish stations for charging 
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such vehicles [24]. The SEEDS project (described earlier in this chapter) is one such 

projects where the PHEV vehicle can be charged at higher speed if it is capable of 

accepting a higher rate of current. This reduces charging time. Implementation of PHEV 

technology provides another means of service from the utility to its consumers. 

2.4.5 Transmission/Substation Automation 

Implementation of the Smart Grid Reliability System will provide better 

utilization and reliability of the overall electric grid, with reduction of greenhouse gas 

emissions and an increase in system capacity. By installing field monitoring 

instrumentation devices to gather real-time telemetry information [25], the following 

benefits can be provided: 

• Reduce duration of customer service interruptions through accurate outage 

detection and feeder automation. 

• Prevent future outages by performing predictive reliability analysis. 

• Reduce system losses, thereby reducing energy use and carbon emissions.  

• Increase agility to manage grid load across Transmission and Generation, and 

more effectively optimize system capacity.  

• Support integration of local storage, distributed generation, and hybrid electric 

vehicles. 

• Effectively dispatch power generation resources based on optimal combination of 

cost, emissions, fuel, and other future environmental constraints. 

2.4.6 Distribution System Enhancements 

The system will benefit from the communications infrastructure of AMI [5 

enhancing power] and also by inclusion of self-healing automation and remote 
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monitoring of the distribution components. These improvements will enhance daily 

operations of grids including reliability of electric services. This is accomplished through 

the following installations: 

• Automated Feeder Switches (AFS), which have capability to work in coordination 

with the feeder breaker to detect faults on the distribution system, isolate the 

faulted section, and restore service to unaffected line sections.  

• Two-Way Capacitor Controls on feeders to work in coordination with existing 

Distribution Management System (DMS) to optimize reactive power of the 

system. This will reduce energy losses on the distribution system. Today, most 

grids utilize a one-way radio system to issue control commands to pole-top 

capacitor banks. Confirmation cannot be made if the control has been executed. 

This often requires multiple control commands being issued to a capacitor bank. 

This causes delays in achieving the desired level of reactive power. Implementing 

the two-way communications will provide confirmation of control commands that 

are executed. 

• Monitoring equipment on automatic “Throw-over” switches to communicate 

status to operators in Distribution Control Center. This will identify any switches 

that have not operated properly so a field technician can be dispatched quicker to 

restore service.   

• Voltage and current sensors on distribution feeders that can provide real-time 

inputs to enhance power-flow analysis performed by DMS and to provide inputs 

to predictive models. This will improve operation network analysis functions, 
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utilized for performing switching on the distribution system to prevent overloaded 

equipment conditions as well as optimizing voltage. 

• Remote fault indicators at strategic locations on distribution feeders that can be 

used in conjunction with fault locating capabilities of DMS to detect the location 

of faults in the distribution system. This will enable faster restoration for 

sustained interruptions and assist in investigation of momentary interruptions. 

2.4.7 Central Control Center  

The intent of the Smart Grid Reliability System is to design and deploy an 

advanced Central Controls center, which includes an investment in a modernized Energy 

Management System and Intelligent Electronic Devices (IED’s) to achieve maximum 

value from smart grid telemetry [27,28]. This system creates a predictive overall view of 

generation, transmission, distribution, and customer device data to improve grid 

performance, increase reliability, and reduce outage restoration times. In addition to 

driving efficiencies, it will provide the capability to model impacts of hybrid electric 

vehicles and distributed renewables such as wind and rooftop solar. Prudent investments 

in measurement devices and system analytics will support regulatory requirements, drive 

increased system reliability, and meet critical cyber security mandates. Implementation of 

the enterprise wide Smart Grid Central Controls Center includes:  

• Develop an Enterprise Wide Smart Grid Central Controls Center to incorporate 

data from Customer, Distribution, Transmission, and Generation systems for a 

more comprehensive visualization of grid functions.  
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• Develop advanced applications and analytics to provide a predictive overall view 

of data to improve grid performance, increase reliability, and reduce outage 

restoration times.  

• Manage reliability and risk profile of energy delivery across the enterprise. 

Better utilization and reliability to the overall electric grid, reduction in 

greenhouse gas emissions, and increased system capacity are the anticipated benefits of 

the Smart Grid Reliability System. By installing field monitoring instrumentation devices 

to gather real-time telemetry information, the system will be able to provide the following 

benefits: 

• Reduce duration of customer service interruptions through accurate outage 

detection and feeder automation. 

• Ability to prevent future outages by performing predictive reliability analyses. 

• Reduce system losses, thereby reducing energy use and carbon emissions.  

• Increase agility to manage grid load across Transmission and Generation, which 

more effectively optimizes system capacity.  

• Support integration of local storage, distributed generation, and hybrid electric 

vehicles. 

• Effective dispatch of power generation resources based on the optimal 

combination of cost, emissions, fuel, and other future environmental constraints. 

2.4.8 Cyber Security  

Cyber security is a critical component in implementation of smart grids because 

grids that have been working in isolation will become connected to modern 

communication systems, including wireless networks. This makes the system prone to 
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cyber attacks [29]. Cyber security is a vast research area in itself; the topic will not be 

discussed further because it is not the focus of this research. 

2.4.9 Integration 

One of the biggest challenges faced by the power engineering community is how 

to integrate all these technologies so that interoperability is established as per 

expectations [30]. One of the biggest efforts in interoperability has been done by the team 

of  EPRI/NIST (Electric Power Research Institute/National Institute of Standards and 

Technology). Interoperability Framework is emerging as a norm for key devices and 

systems [31]. This clearly defines interface points among business domains, systems, and 

smart grid components. The following is a subset of a high level view based on 

EPRI/NIST suggested standards.(figure 2.4). A similar effort is also promoted by 

GridWise Architectural Council Interoperability Framework.  
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Figure 2.4. Top Level View of Interoperability: Smart Grid Systems 

In figure 2.4, the transmission level upgrades required for the existing grid to 

transform into a smart grid are: Phasor Measurement Units (PMU), digital disturbance 

recorders, Intelligent Electronic Devices(IED) and microprocessor based protection. At 
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the distribution level, automated feeder switches, remote fault indicators, two-way 

protections systems with AMI are the select few items required. At the load side 

(customer), smart (AMI) meters with Home Area Network(HAN), renewable resources 

with DSM options are a few of the technologies needed in the implementation of a smart 

grid. The benefits of smart grid technology can be achieved if interoperability has been 

established in proper way. For example, AMI data will be used as follows to provide 

services in day-day operation: 

• Since meters are on an AMI network, the response to any failure can be in micro 

or milliseconds. If power is lost due to failure, AMI meter can send a signal to the 

Outage Management System (OMS). After analysis, the OMS can decipher 

whether a repair service is required or if the fault will be cleared on its own (e.g. 

Failure of some load item like a refrigerator, TV etc.). To take care of such 

failure, there would not be any need for a call from the customer, and an 

automatic service routine will be triggered on receiving the signal from the AMI 

meter. 

• Another scenario is when a customer calls because of an electricity outage in the 

house. The Distribution and outage management system will automatically know 

(from the AMI meter at customer premises) whether energy is available at the 

customer’s doorsteps or not. Hence, many such failures can be resolved 

immediately rather than waiting for a service engineer to make a visit to the 

customer location. This will enable customers to easily acquire information 

regarding the nature of the malfunctions of their electricity. 
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• Similarly, if a repair has been recently completed, the AMI meter can verify 

automatically whether the service is restored or not. 

• Furthermore, the AMI meter working in a network can confirm immediately 

whether power has failed in the region. This region can also be identified with 

help of Geographic information system (GIS) linked to AMI meters. 

• Customer loading data will be improved dramatically through hourly usage data 

from AMI. Present day customer loads are determined by algorithms that have 

been present for many years. It is also determined by an estimated peak load for a 

customer based on the monthly reading. Load profiles are estimations based on 

customer type, season, and day. Using (estimated) diversity factors,  data are 

aggregated to estimate transformer loading  
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2.4.10 Integration of Transmission/Substation Intelligence  

  

 

Figure 2.5. Smart Grid Coordination Across Generation, Transmission, and Distribution 

Many power plants have already gained knowledge regarding the use of 

technology in monitoring critical equipment, while proactively performing preventative 

maintenance in order to extend asset life and improve reliability. This existing experience 

with central control tools, and proven success allow leverage for central control 

applications to improve Transmission and Distributions Grid’s strengths [32 - 35]. In 

figure 2.5, the smart grid coordination picture is depicted. This concept would enable 

transmission and substation intelligence to operate in such a fashion that the auto load 
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management, feeder control, monitoring of equipment remotely and self healing concepts 

can be implemented.  

This integration of multiple technologies to establish a smart grid poses new 

challenges as well [36-38]. There will be need of new tools to assess and predict 

reliability issues. The goal of this research is the development of new electrical system 

tools to monitor and analyze the relationship of weather and electrical infrastructure 

interruptions. The goal will be accomplished by modeling weather & distribution system 

reliability issues, developing forecasting tools and by developing mathematical models 

for  the availability of the system with smart grid functionality. The expected results 

include the ability to predict and determine the number of interruptions in a defined 

region; a novel method for calculating smart grid system’s availability; a novel method 

for normalizing reliability indices; and to determine manpower needs, inventory needs, 

and fast restoration strategies.  

In the following chapter, we will address the modeling of weather and distribution 

system reliability, and the formation of a novel predictor will be displayed
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CHAPTER 3: SMARTGRID RELIABILITY AND AVAILABILITY 

 

Electric grid infrastructure requires robust and intelligent systems that can 

respond dynamically to address natural or man-made faults and interruptions. The effects 

of weather (e.g. strong winds, rain, lightning, cold fronts, snow, etc.) on the electrical 

infrastructure are expected to increase in the near future. The resulting power 

interruptions produce economic hardships costing more than 80 billion dollars annually. 

Since the electrical infrastructure is fragile, every adverse weather system that passes 

over it presents a threat to the reliability of the power system. In case of a disruption due 

to weather, it is very difficult to supply energy and restore the system, especially if 

transmission and distribution lines are affected. These issues lead to innovation and to the 

next generation of power systems that must be flexible, reliable, and intelligent. 

Envisioned in these advances is a revolutionary way of sensing, intelligence gathering, 

and corrective actions. The goal of this endeavor is to provide near uninterruptible service 

during severe weather events, and the ability to monitor the critical electrical 

infrastructure in real time. 

3.1 Introduction to Smart Grid Power Quality, Reliability and Availability  

 The reliability of power distribution systems is dependent on many variables such 

as load capacity, customer base, maintenance, age, and type of equipment. Nonetheless, 

the variable most often cited for lowering the reliability of the system is weather. 
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Contrarily, the prevailing weather conditions are often overlooked in reliability analyses. 

These conditions include, but are not limited to: rain, wind, temperature, lightning 

density, humidity, barometric pressure, snow, and ice. 

 In order to analyze power system reliability with the aspects listed above, it is 

necessary to have stringent well-defined measurement and comparison methods. This 

practice is referred to as metrics [39]. The standards are being adopted; hence, it is wise 

to address the commonly used definitions for the metrics and indices. 

3.1.1 Relationship of Power Quality, Reliability, and Availability 

Power quality is a general term; it has various definitions depending on the 

context in which it is used. For customers, if the load is negatively affected, there are 

power quality issues. For utilities, non-compliance of any parameters such as harmonics 

can be a power quality issue [39]. One of the definitions of power quality is: the absence 

of deviation from pure sinusoidal voltage. This definition makes all reliability issues 

(including customer interruptions) a part of power quality [39]. There are equal numbers 

of groups which identify power quality and power reliability issues as a subset of each 

other. The important point from the industry perspective is that the electric utilities gets 

penalized on reliability issues and thus their view is to have all aspects(including power 

quality) as part of reliability study. Customer interruption is if the voltage reaches zero 

(power not available for certain duration). This is a deviation from a pure sinusoid thus, a 

power quality issue. In general, it is agreed that power quality is a subset of power 

reliability; however, the demarcation of boundaries between the two is not so well-

defined . Interruptions that exist for more than a few minutes are called sustained 

interruptions and are regarded as a reliability issue. Whereas, interruptions that exists for 
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less than few minutes are known as momentary interruptions, and are classified as power 

quality issues. The reasons are: [39] 

• Momentary interruptions happen during intentional operating practices. 

• Momentary interruptions do not generate large numbers of outages/ customer 

complaints. 

• Difficult to measure 

However, in the modern age, all kinds of interruptions, including momentary 

interruptions, count as important customer issues and thus, are considered a reliability 

issue.  

The third classification is ‘Availability’. Availability is defined as the percentage 

of time a voltage source remains un-interrupted . Since availability is defined in terms of 

interruptions (un-interruptions), it is considered a subset of reliability. For our purposes, 

power quality, reliability, and availability are shown in figure 3.1 as a Venn diagram. 

Availability is a subset of power quality and power quality in turn is a subset of power 

reliability.  

In summary, power quality deals with deviation from a pure sinusoidal voltage 

and/or current waveform. Reliability addresses all kinds of interruptions and availability 

deals with the probability of being in an interrupted state. 
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Figure 3.1. Availability, Power Quality and Reliability Shown as Subsets of Each Other  

3.2 Power System Reliability, Availability Metrics, and Indices 

 In this section, important definitions and statistical/aggregation formulae’s that 

are required to fully understand power system reliability and availability, will be 

explained. 

3.2.1 Reliability 

 Electric power distribution reliability primarily relates to equipment outages and 

customer interruptions. Under normal operating conditions, all equipment is energized 
34                                                                                               

 



www.manaraa.com

35                                                                                               

 

(except backup/standby) and the electricity is available to all connected customers. 

Scheduled and unscheduled events create disruptions to normal operations causing 

outages and interruptions. Some of the key parameter’s definitions are given below [39]: 

• Contingency: An unexpected event, such as a fault or an open circuit; an unscheduled 

event. 

• Open Circuit: A point in a circuit that interrupts load current without causing fault 

current to flow. False tripping of a circuit breaker is an example. 

• Fault: May be defined as a short circuit. It is the breakdown of dielectric insulation of 

the system. If it clears on its own, it is termed as a self-clearing fault. If the fault is 

cleared by de-energizing and re-energizing the circuit, it is called as temporary fault. 

If the fault requires manual intervention for repair, it is termed as a permanent fault. 

• Outage: When a piece of equipment is de-energized either by scheduled or un-

scheduled event, it is termed as an outage. Un-scheduled outages happen due to 

contingencies. 

• Momentary Interruptions: When a customer is de-energized for less than a few 

minutes, it is termed a momentary interruption. Most of these happen due to closing 

of automated switches. 

• Momentary Interruptions Event:  If multiple momentary events happen during a short 

duration of time (several minutes), it is counted as one momentary event.  

• Sustained Interruption: A sustained interruption occurs when customer is de-

energized for more than few minutes. These situations arise from faults and open 

circuits. 

 Maximum duration of momentary interruption varies from utility to utility. Most 
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utilities follow the guidelines set up by the Public Service Commissions (PSC) in their 

individual service area states. Generally, it is considered less than 1 minute. IEEE 1366 

standards [40] identify any interruptions for less than 5 minutes as momentary. This is 

done to make sure that an automated switch can take care of the fault (if possible), and 

that the interruption is listed as momentary. However, most of the automated equipment 

cannot take care of faults in less than a minute. Because of this, the reliability indices’ 

calculations are more accurate and promote the use of automation in the industry. 

3.2.2 Availability 

 Availability is the probability of something to be energized. It is calculated in 

percentage or per unit. The complement of availability is un-availability. The annual 

interruption time can be estimated by comparing the percent availability between 90% 

and 99.9999999%. By comparing the number of ‘nines’ in the % availability, an estimate 

to the annual interruption time(AIT) can be given. For example, if the availability is 90% 

(1 nine), the AIT is 36.5 days. At 99% (2 nines), AIT drops to 3.7 days, while at 99.9%(3 

nines)  it drops even further to 8.8hrs. Following this trend (AIT dropping by a factor of 

10 with every additional ‘nine’), an availability of 99.9999999% have an AIT of 1.9 

cycles (60HZ) or 31.67 ms. This being said, if a customer faces 9 hours of outages in a 

year, the un-availability is = 9/8760 hours which is 0.1%; the availability is 100- 0.1 = 

99.9%. 

3.2.3 Reliability Indices 

 Appendix A provides a list of definitions and formulae for calculations of various 

short-term and long-term reliability indices. The mathematical formulations of various 
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indices are provided with other parameters [40]. Further discussions regarding the 

calculations of various reliability indices are done in chapter 4 and 5. 

3.3 Interruption Causes and Modeling 

 As discussed earlier that the reliability of power distribution systems is dependent 

on many variables such as load capacity, customer base, maintenance, age and type of 

equipment. Ironically, the variable most responsible for decreasing reliability is weather, 

which is often overlooked in reliability analysis.  

 Reiterating that the weather and environmental conditions to be addressed 

includes, but are not limited to, rain, wind, temperature, lightning density, humidity, 

barometric pressure, snow, and ice. The models are developed to allow broad application, 

since these conditions do not occur simultaneously at any one place, and the range of 

combinations is great. Using the data collected, statistical and deterministic simulations 

of the models are done by employing existing software; the results will be used to refine 

the models. In order to validate the models, power interruptions will be predicted in areas 

that can be easily monitored. The following section explains each important cause of 

power interruption and their respective models are explained.  

3.3.1 Equipment Failure 

 Distribution networks have various kinds of equipment installed to make sure that 

the electricity supplied is safe and secure. When first installed these equipment have a 

greater chance of failure due to manufacturing defects, incorrect installation, and damage 

due to shipping and handling. Equipment already in place (in circuit) for some time, may 

fail due to extreme electrical conditions such as continuous overload, high voltage, and 

variable weather conditions (including lightning). Furthermore, the equipment may also 
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fail due to changes in the chemical composition, aging, and mechanical wear [39]. We 

will try to address some of these issues and discuss certain models for equipment failures. 

 The rate of equipment failure needs to be modeled for electric utilities to plan, 

engineer, and operate a system at the highest levels of reliability for the lowest possible 

price [43]. Some utilities however, have a problem with the type of equipment being used 

[44]. Most utilities perform regular equipment inspections and have tacit knowledge that 

relates inspection data to the risk of equipment failure. One of the methods used to 

improve the accuracy of the system is by using equipment inspection data to assign 

relative condition rankings. These rankings are then mapped to a failure rate function 

based on worst-case units, average units, and best-case units [43]. 

3.3.1.1 Transformers  

 The transformer is a key component for any distribution network. Reliability 

issues of transformers can happen in two related ways; overload and failure [39]. 

Transformer forms a sort of bottleneck in the earlier distribution network. If there is a 

major failure in the transformer then there can be power interruptions to thousands of 

customers. In order to handle such situations, other transformers are tasked with taking 

over the entire load or with sharing the interrupted load. If no spare transformer capacity 

is available, a decision is made to overload other in-service transformers, resulting in the 

deterioration of longevity for those transformers. This process compromises either 

improving the current reliability, or increasing the probability of future transformer 

failure. Understanding transformer ratings and thermal aging is critical in making the 

right decision during such a situation of reliability risk management. 
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 Transformer ratings depend on the expected life of the winding insulation at a 

specified temperature. Standard transformer ratings are designed at a 30°C ambient 

temperature while average winding temperature rises from 55°C or 65°C with an 

additional hot spot rise of 10°C or 15°C. Often, the life of the transformer is defined as 

the time required until it deteriorates to 50% of its mechanical strength. This occurs due 

to a breakdown of insulation because of excess heat [39].  

 Temperature rise is a key factor for transformer failure. The temperature rise can 

be either due to the load or due to harsh weather conditions. Thus, it is of high interest to 

look at the impact of the rise in ambient temperature, and number of power interruptions 

due to transformer failure.  
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Figure 3.2. Variation of Average N due to Transformer Failures Versus Maximum 

Temperature [45] 

The monthly averages (means) of the maximum temperatures and the monthly means of 

the total number of interruptions due to transformer failures, for 4 years (1998-2001) of 

data collected from the South Florida region is shown in figure 3.2. With these 
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conditions, the total number of monthly data points is approximately 567.                                                   

The legend for figure 3.2 is as follows:  

   PI – Prediction Interval limits Regression

95% CI

95% PI    CI – Confidence Interval limits 

In the figure 3.2, the two peaks on each side of the graph maybe due to the 

overloading of transformer at these temperatures. It appears that around 750F to 800F, the 

temperatures are in the comfort zone of the human body and thus the need of excess 

power is not there. There will not be an increase in transformer failure interruptions 

because it is an optimal operating temperature. After Approximately 800F however, the 

curve increases in an exponential way (right-skewed). This indicates that the effects of 

higher temperatures not only cause more interruptions, but also are more predominant 

than those of lower temperatures are; these effects are expected in Florida, whose climate 

is tropical and sunny throughout the year. If we average the data points [45], a clear 

pattern is observed between the variables by suppressing the disturbances/noise in the 

data set. The important point that should be observed is that as the number of data points 

decreases, the plot becomes smoother with the increase of the R2 value.  

In the variables given in the equation after the regression analysis(next to the 

plots), R2 represents the proportion of variability in the Y variable accounted for by the X 

variable. Given the maximum temperature of a day, it is therefore possible to predict the 

total number of interruptions from a transformer for any management area (MA). 

3.3.1.2 Underground Cables 

Underground cables provide better ruggedness and are more effective against 

many above ground reliability issues. The tradeoffs are long downtimes in case of 
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failures and high cost. Major issues with underground cables are electrochemical and 

water treeing. When the moisture penetrates in presence of an electric field, the dielectric 

strength of the cable insulation is reduced; this is called treeing [39]. Known as treeing, 

the moisture permeates the extruded dielectrics of the insulation such as cross-linked 

polythene (XLPE) or ethylene propylene rubber (EPR); the breakdown patterns resemble 

a tree [39]. This in turn reduces the voltage withstand capability of the cable. With time, 

the insulation strength degrades so much that the voltage transients, such as lightning or 

switching, causes dielectric breakdown. With an increase in temperature, the moisture 

absorption also increases; there is a strong correlation between thermal aging and treeing 

[39]. 

Water treeing in XLPE cables is a costly reliability issue for utilities. 

Manufacturers of cables have developed jacketed and tree retardant cables (TR-XLPE). 

Cable jackets prevent moisture to seep in. The tree retardant reduces the development of 

a tree inside the cable after the moisture seeps in. Treeing is attributed to impurities and 

imperfections, which enter during the manufacturing process of cables. Quality control 

over manufacturing and testing of cables before installation largely improves reliability.  

3.3.1.3 Overhead Lines 

 Overhead lines reliability issues are mostly caused by external factors such as 

vegetation, animals, and variable weather, which will all be discussed in detail in the 

following sections. Bare conductors fair better in terms of temperatures and high current 

capacity. In any case, higher currents do affect reliability and can cause sagging, 

annealing, and breakdown if a fault current is not cleared fast enough [39]. Overhead 

lines are installed on poles. Earlier poles were of wood but recently, the new norm is to 
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replace wood poles with concrete poles whenever required. This improves physical 

ruggedness of the infrastructure under extreme weather conditions. The major reliability 

issue with poles is its capability to withstand high wind speed. The effects of wind on 

overhead infrastructure (e.g., poles, lines, pole mounted equipments) are also discussed in 

the following section. 

3.3.1.4 Circuit Breakers 

 Circuit breakers have many components which increase the complexity of the 

equipment. With so many parts, the failure of circuit breakers can take place in many 

ways. Failure can be internally related to its own functioning. The two major reasons for 

circuit breakers failures are: (a) open when it should not, and (b) failed in service (cannot 

operate). These two failure modes constitute 74% of the reasons why failures in circuit 

breakers occur [39]. 

3.3.2 Weather Conditions 

 The reliability of electric power system has remained a challenge for years. The 

goal is to provide near uninterruptible service during variable weather events [46]. But 

due to the ever increasing demand and high expectations from customers, sometimes, 

power outages are simply unavoidable. Most power outages are caused by weather-

related events [45]. Interruption may be defined as a loss of service to one or more 

customers. As stated before, interruptions may be caused due to many factors like 

equipment failures, animals, weather conditions (Common), severe weather conditions 

(extreme wind, tornados, hurricanes, swinging, galloping and Aeolian vibration, lightning 

storms, ice storms, heat storms, earthquakes ,fire, etc), trees, human factors, and other 

causes. Extreme weather is rare, but creates multiple faults on the grid that take a longer 
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lead time to restore power back to the customers. The next section talks about the effects 

of both extreme and common weather conditions. 

 According to figure 3.3, the distribution of identified causes of interruptions for 

the area being studied shows that weather contributes approximately 10% to the total 

number of breakdowns/faults (N). However, this document will demonstrate that as much 

as 50% of the variation from the mean(N) can be accounted for by weather, especially in 

distribution networks.  

 

Figure 3 3. Distribution of Interruptions by Identifiable Causes 

 The regression models were developed using both raw weather data and weather 

data that was modeled to reflect their known effects on N. R2 was chosen as the statistic 

of interest because the R2 value of the regression result is the percentage of variance of 

the mean that is accounted for by the equation. 
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The following work also shows the analysis of, and modeling for, the power 

distribution system response to variable weather conditions. Included are the average 

temperature (T), two minute maximum sustained wind speed (S), daily total rainfall (R), 

and total daily number of lightning strikes (LS). The results show that the modeled 

equations return a consistently higher R2 value compared to equations that rely on raw 

weather data. Consequently, accounting for a larger percentage of the variance from the 

mean number of interruptions experienced daily. 

3.3.2.1 Wind  

 As we see changes in the climate, many things are affected including the local 

weather, which has also shown extremities at many times. Wind plays havoc in the 

infrastructure if it reaches higher speeds. The study of wind flow is critical to power 

engineering. System designed wind flow studies are an important part of power 

engineering. They are used in system design, maintenance planning, and as an alternative 

source of energy. It is a known fact that the power of wind is directly proportional to the 

cube of the wind speed, it should not be surprising then that the electric power 

interruptions also show similar third order relationship to the wind speed. 

Extreme winds can be linear or circular (tornadoes). There are four factors which 

attribute to the severity of windstorms; a function of sustained wind speed, gust speed, 

wind direction, and the length of the storm. Severity is dependent on the vegetation and 

climate as well [39]. A Hurricane is the name of a counter-clockwise rotating storm with 

wind speeds in excess of 74mph. Hurricanes cause damages to distribution system in 

many ways. Oftentimes it is caused by uprooting trees that fall and damage overhead 

distribution systems. Electric poles may also be blown away, or knocked down with high-
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speed winds. Other effects of winds are swinging, galloping, and Aeolian vibration. Wind 

speed beyond a certain point has a huge impact on the number of interruptions. Figure 3.4 

shows the relationship between wind speed and the mean number of interruptions in the 

region. The available data from the present weather recorder diminishes beyond 32MPH. 

[47]. 

               

Figure 3.4. Variation of Mean of N Versus Wind in Dataset being Analyzed [47] 

 The cubic relationship between wind speed and the mean number of interruptions 

allows the modeling of the effect of wind on the total number of interruptions as:  
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3 (3.1) 2
3 1 2 3avgN Y B S B S B S= + + +

where S is a two-minute maximum sustained gust. 

 There is a very good correlation between wind and the total number of 

interruptions (N) [47]. No significant pattern emerged when the plot was drawn between 

the daily 2 min. maximum wind gust (TMMG) speeds (mph) and N. 
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Figure 3.5. Variation of N Versus Wind  

 For a given value of the TMMG speed, there are different levels of N. Shown in figure 

3.5, the plots of the averages of different levels of N occur at each of the speeds of 

TMMG. 

From this graph, until wind speed reaches 40mph, there is a visible pattern, 

beyond that, no emerging pattern is visible. A pattern might have emerged if the TMMG 

speed levels(greater than 40mph) have happened at least 30 times during the 4 years of 

1998-2001. Other lower speed levels accounted for for 98.5% of the total data set. 

Similar to figure 3.5, it can be observed from figure 3.6 that the correlation obtained 

through this process is very high, R2 = 99.3% and reveals the existence of strong cubic 

relationship between N and TMMG.  
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Figure 3.6. Mean of 2 minutes wind speed vs. average number of interruptions[47] 

 From figures 3.5 and 3.6  after 20mph it can be observed that the total average 

number of interruptions increases exponentially. Accordingly, power distribution poles 

and overhead equipment, are designed in such a way that there will not be any disruption 

arising from wind gusts in excess of 20 mph. At present the latest norm is to design 

system to withstand Category 3 hurricane (in the regions where wind speeds are high). 

Most of the infrastructure is old and can only withstand 90MPH winds gusts. Beyond this 

point the electric grid infrastructure faces extreme damages and restoration time runs into 

days and months. 

3.3.2.2 Ice Storms 

 Ice storms occur when super cooled rain freezes on contact with conductors and 

tree branches, forming ice layers. This happens when the ground temperature is below 

freezing and a winter warm front passes through that area. Ice buildup increases the 

surface area facing the wind and hence loads excess weight on the conductor and the 

poles, causing them to either gallop or break. Additionally, tree branches with ice buildup 
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can break and affect the overhead distribution network. Ice loading can be computed as 

follows [39]:  

• Wi = 1.244xTx(D + T) [3.2] 

• Wi = Ice load (lb/ft) 

• T = Radial thickness of ice (in) 

• D = Conductor diameter (in) 

Typical assumption for ice density is 57-lb/ft [39] 

Wind loading is calculated by wind pressure, multiplied by the conductor diameter, plus 

ice thickness: 

• Ww = V² x ( D + 2T) (3.3) 

   4800 

 

• Ww = Wind load (lb/ft) 

• V = wind speed (mi/hr) 

The ice load and the wind load may or may not be in the same direction, regardless, the 

total conductor load is computed as a vector sum of the two values: 

• W =  (Wc + Wi + Ww)  (42) 

• W = Total conductor load (lb/ft) 

• Wc = Bare conductor weight (lb/ft) 

Overhead distribution systems are designed to take care of expected icing and wind 

conditions. 
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3.3.2.3 Heat Storms 

 Extended periods of exceedingly hot weather create their own issues for 

distribution networks; such situations are termed heat storms. High ambient temperature 

creates two types of issues: 1.) The equipment cannot dissipate as much heat to the 

surrounding air, 2.) The demand for electricity increases tremendously with the extensive 

use of air conditioning.  

3.3.2.4 Rain 

 The primary weather parameters contributing to N in the area under study are 

wind, temperature, rain, and lightning. In the earlier discussion in this chapter the 

correlation between wind, temperature and N has been shown. Studies that include other 

parameters such as humidity have shown considerably less correlation with N. If we plot 

four years of rain (RAIN) data with respect to the time in months, many general 

conclusions can be drawn. The plots are shown below (figures 3.7 – 3.10). The Rain data 

is in inches (in):  
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Figure 3.7. Monthly Mean Distribution of Rain for year 2000 [46] 

 

Figure 3.8. Monthly Mean Distribution of Rain for Year 2001 [46] 
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Figure 3.9. Monthly Mean Distribution of Rain for Year 2002 [46] 

 

Figure 3.10. Monthly Mean Distribution of Rain for Year 2003 [46] 

 There is a piecewise relationship between the rain and the number of 

interruptions, N in a region. Rain does not only affect this relationship directly, but also 
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through vegetation and other effects like rusting and the insulation failures of equipment. 

Once the rain is in excess and the vegetation gets saturated; there is a good chance of a 

tree limb falling on the distribution network if proper tree trimming has not been done 

.Further the soil weakens with continuous rain and causes erosion which further escalates 

tree falling. Using all of these facts and modeling the rain as a piecewise linear function 

against the total number of interruptions in a region; the following equations are 

developed with three segments:  

 1 0" 1" 0R Rain and elsewhere= ≤ <         (3.5) 

 2 1" 2" 0R Rain and elsewhere= ≤ <        (3.6) 

        (3.7) 3 2" 0R Rain and elsewhere= ≤

 In developing the model, the complete dataset was re-arranged to follow the 

above equation. The above definitions comprise the entire dataset, and the regression 

analyses were done using the following model equation for rain: 

                (3.8) 3 1 2 31 2avgN Y C R C R C R= + + + 3

3.3.2.5 Lightning Strikes 

 A lightning strike occurs when the voltage generated between the cloud and the 

ground exceeds the dielectric strength of the air. Distribution systems are affected by 

lightning strikes in specific localized areas. Given below is the statistical analysis of 

lightning strikes (LS) in the region under study. Figures 3.15-18 show the monthly 

distribution of lightning strikes for the period between the years 2000-2003. 
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Figure 3.11. Monthly Distribution of LS for year 2000 [46] 

 

Figure 3.12. Monthly Distribution of LS for year 2001 [46] 
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Figure 3.13. Monthly Distribution of LS for Year 2002 [46] 

 

Figure 3.14. Monthly Distribution of LS for Year 2003 [46] 
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 Based on figures 3.11-3.14, there is a year-to-year variation in monthly averages. 

The information would be misleading if the reliability reports were not adjusted for 

seasonal weather patterns. In addition, weather patterns change from year-to-year, and the 

number of interruptions either increase/decrease accordingly. Consequently, the preferred 

model needs to incorporate adjustments of the indices in both directions (making it a 

bilateral analysis). Further analysis over normalization of reliability indices is done in 

chapter 5.  

 In Florida, lightning tends to occur in storm cells that may be localized and only 

pass over a sparsely populated area [47]. Of course, it may also affect a heavily populated 

area where the majority of power lines are buried, thus LS can have a random, though 

important, effect on N. Generally accompanied with LS are the combined effects of 

strong winds and rain. Since there was sparse evidence for a narrow time-frame model of 

the effects of lightning, a linear predictor model was used instead. The model of lightning 

is given by: 
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S4 1avgN Y D L= +  (3.9) 

where LS is the daily total number of lightning strikes. 

3.3.2.6 Temperature  

Previously discussed in section 3.3.1.1-Transformers, are the effects of 

temperature. This section will model the effects of temperature. The increase of N at low 

and at high temperatures can be attributed to the increase in power demand due to the 

heating/cooling requirements of customers [47]. 
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Figure 3.15. Variation of Mean N Versus Average Temperature [47] 

Expressed as a regression equation, the relationship in figure 3.15 is:  

278.79 2.076 0.01523avgN T= − + T                                (3.10) 

where Navg is the mean number of interruptions and T is the average temperature. 

Taking the derivative of (3.10) and equating it to zero, we see that at T=68.15º F, 

which is where the minimum number of interruptions occur. Using integer values, 68º is 

considered the optimal temperature (OT). 

     Since the demand for power varies with temperature, the effect of ambient 

temperature movement away from the optimum temperature (OT=68) was modeled. In 

the model, two parameters are defined, heating degrees (HD) and cooling degrees (CD). 

These parameters are available in the ASOS data; however, they are fixed with an OT of 

65º, so it is desirable to recalculate using the local conditions. HD is defined as the 
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number of degrees below the OT existing on a particular day, while CD is defined as the 

number of degrees above the OT. Since the relationship between the average temperature 

and N is quadratic, this model will have second order terms for HD and CD. 

The model equation for average temperature follows: 
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2                          (3.11) 2
1 1 2 3 4N Y A HD A HD A CD A CD= + + + +

where A1, A2, A3 and A4 are the coefficients and are not equal to zero. 

3.4 Optimization of Component Modeling 

Earlier research work focused on modeling the effects of extreme weather 

conditions on power distribution systems, and on specific weather parameters causing 

specific faults in the distribution system. A theoretical model based on variable weather 

conditions is used to predict power distribution interruptions, while immediate weather 

conditions are used to analyze interruption risk assessment. Analyzing daily and hourly 

weather data, these models can normalize the reliability indices for weather and predict 

the number of daily or by shift interruptions. 

 Aside from the obvious culprits for interruptions (i.e. lightning, ground or line-to-

line faults caused by vegetation and/or wind), the effects of common weather conditions 

on power reliability events have rarely been addressed. When exposed to natural wetting, 

such as humidity or rain, tests performed on contaminated insulators have shown that the 

electrical characteristics of the insulators are altered [41]. Lower barometric pressure 

causes coronal effects to be more pronounced which in turn can affect flashover rates 

[42]. In addition, other environmental phenomenon may also contribute to power 

reliability events in ways that are not considered. 
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 Common weather excludes catastrophic events such as hurricanes or tornados, 

“which exceed reasonable design or operational limits of the electric power system” [1]. 

For extreme weather, there are methods being studied and ones already in place to define 

major reliability events, such as the aforementioned, while excluding the consequent 

interruptions from the calculation of reliability indices [2,3,4]. Since extreme weather 

physically damages entire power distribution systems, it also receives the most publicity 

which in turn takes up much of the focus on modeling the effects of weather [5,6,7]. 

There is also a body of work that includes weather as a factor in the analysis of specific 

fault causes [8,9,10]. However, there are no available models that consider the effects of 

common weather conditions, in order to predict the total number of daily or by-shift 

interruptions. 

 Reiterating that the weather and environmental conditions to be addressed 

include, but are not limited to, rain, wind, temperature, lightning density, humidity, 

barometric pressure, snow, and ice. The models are developed to allow broad application, 

since these conditions do not occur simultaneously at any one place, and the range of 

combinations is great. Using the data collected, statistical and deterministic simulations 

of the models are done by employing existing software; the results will be used to refine 

the models. In order to validate the models, power interruptions will be predicted in areas 

that can be easily monitored. 

3.4.1 Area Under Study 

One of the largest utilities in Florida has been providing reliability and lightning 

data to support this research. In addition, weather data from the National Climatic Data 

Center (NCDC) is available to academic institutions or governmental bodies. This data is 
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reported by 886 automated surface observation stations (ASOSs) located at airports 

around the country [49]. As many as 15 Management Areas (MA), each providing 

thousands (for daily) or tens of thousands (for hourly) of lines of data, can be combined 

with weather data to create the files used for statistical or neural network analysis. This is 

a unique study of power distribution networks, never before done on this scale. 

     

Figure 3.16. Location of Weather Data Recorder 

In figure 3.16 the critical automated surface observation stations (ASOSs) are 

identified. As can be seen, some of the county regions area is quite far away from where 

the observatories are and hence the data does not depict exact weather conditions for 
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remote locations from the airport. To reduce such error, the utility companies are 

installing their own automated weather recorders.  

The parameters being used to develop the combined predictor and risk analysis 

model is listed in table 3.1. The list contains weather parameters such as wind, rain, 

temperature and dew deposition. The lightning parameter and the outages or interruption 

parameter’s data is provided by the utility providing services to the region of study. The 

data provided for research is listed in terms of the utility system. All these data are then 

processed in order to bring to a common scale and timeline. 

Table 3.1. Weather, Lightning and Interruption (N) Codes and their Explanations Used 

for Combined Predictor Model 

Call Sign Call sign for the reporting airport 
Date Date 
MaxTemp Maximum temperature for that day 
MinTemp Minimum temperature for that day 
AvgTemp Average temperature for the day 
DepNorm Departure from normal 
AvgDew Average dew point 
AvgWet Average rainfall for that day 

HeatDays Days cooler than some specified temperature when 
customers are likely to use heaters 

CoolDays Days warmer than some specified temperature when 
customers are likely to use AC's 

SigWeath Weather station identifiers 
Rain Amount of rain in inches for that day 
AvgStPR Average atmospheric pressure for that day 
AvgSeaPR Average sea pressure for that day 
ResWdS Average resultant wind speed for that day 
ResWdD Average resultant wind direction for that day 
AvgWdS Average wind speed for that day 
5SMaxS Maximum sustained wind speed for 5 seconds for that day 

5SMaxD The direction of the maximum sustained wind speed for 5 
seconds for that day 

2MMaxS Maximum sustained wind speed for 2 minutes for that day 
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Table 3.2. (Continued) 

2MMaxD The direction of the maximum sustained wind speed for 2 
minutes for that day 

Lightning Strikes Total number of lightning strikes that day 
Without Exclusions Total number of outages for that day 

With Exclusions Total number of outages minus the total number of outages 
caused by allowable exceptions for that day 

Weather.With Exclusions Total number of weather outages for that day 

Weather.Exclusions Only 
Total number of directly correlated weather related outages 
minus the number of directly correlated weather related 
outages caused by allowable exceptions for that day 

Outages.(Blank) Total outages caused by unknown reasons for that day 
Outages.Accident Total number of outages caused by accidents for that day 
Outages.Animal Total number of outages caused by animals for that day 
Outages.Corrosion/Decay Total outages caused by corrosion and decay for that day 
Outages.Dummy CFR Total number of dummy tickets for that day 

Outages.Equipment Failure Total number of outages caused by equipment failures for 
that day 

Outages.Improper Process Total number of outages caused by improper process for 
that day 

Outages.Other Total number of outages caused by other reasons for that 
day 

Outages.Request Outages caused by customer request 
Outages.Transmission Total number of transmission outages for that day 

Outages.Unknown Total number of outages caused by unknown reasons for 
that day 

Outages.Vegetation Total number of outages caused by vegetation for that day 
Outages.Weather Total number of outages caused by weather for that day 
 
 

3.4.2 Data Analysis and Processing 

 This study did not only develop novel combined theoretical models regarding the 

effects of common weather (while incorporating existing, relevant ones), but also applied 

them by solving the problem of predicting the daily number of interruptions. Real-time 

interruption risk assessment capabilities was also developed. As mentioned earlier, the 

data comes from the National Data Center (NCDC), and from one of the largest utilities 

in the United States. The weather data can be downloaded online and includes both daily 
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summaries and hourly, or even half-hourly, reporting. Additionally, the utilities are 

installing their own weather stations at service centers that are centrally located in their 

various management areas, providing an additional source of weather data. 

   The interruption data used to generate the models includes all interruptions 

described by all cause codes for an entire day. On the other hand, the weather data was 

relatively inaccurate because daily maximums and averages collected from point sources 

were not usually central to the area being studied. In order to model the data more 

precisely, the period in which the weather data is collected needs to be decreased from 

daily to hourly, and by improving the location of the point weather source. 

    Expanding to include weather variables not generally occurring in Florida, a 

better model can be generated. Using statistical methods and neural network theory while 

translating NCDC and SG interruption data into the proper format, models will be 

simulated and modified as needed. It has been shown previously that there is significant 

correlation between wind, temperature, rain, and N . 

 Using both raw weather data and pre-existing models, regression models were 

developed to reflect their effects on N. The regressions showed that by comparing R2  

values, the effects of weather parameters are related and have a severe effect on N, if 

more than one of these parameters are at their extreme limit. These modeled equations 

improve the variability by up to 20% from the mean of N, compared to when raw data is 

used to form the mathematical models. 

Given below in figure 3.17 are the excerpts of the data of various variables being 

used in developing the combined model of the predictor. Multiple sets of data are saved 

for comparison and analysis. Such as when comparing the variability between N and raw 
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weather data with the variability of N with modeled data. Further analyses were done to 

compare the variability after simulating using neural network software.  

 

 

 

Figure 3.17. Sample List of Key Data(raw) for Modeling a Combined Predictor 

The development of the theoretical models began with the preexisting models and 

then expanded to include other variables to form a combined model. We have used 
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statistical and neural network software to simulate the models and modify them as 

needed. This additional data from other regions has broadened the range of weather 

conditions for which the models may then be validated. 

 The daily summary data used in this study has been able to create files with 40 

columns and 14000 rows for computer analysis. The amount of data that requires 

archiving and correlating has increased tremendously, with the inclusion of hourly 

reporting and the use of interruption data from additional sources. The creation of a 

database that can manage that amount of information was the first priority. Additionally, 

the weather data that is downloaded from the NCDC is in ASCII format that is not readily 

importable to the analysis software. To advance the project, additional software was 

configured to handle the NCDC data, the weather data provided by the utility weather 

stations and any other data that is required that is not properly formatted. This document 

is not proposing to reinvent the wheel; the intent is to incorporate existing models to aid 

the ones being developed. For example, load prediction utilizing the temperature, 

humidity to find a human comfort zone (heating/AC), is a proven technology. Another 

example is that the probability of flashover due to ice buildup has been studied 

extensively [42] and may also be of use.  

     In order to validate these models, significantly accurate predictions of the number 

or frequency of interruptions must be produced. These predictions will be through 

simulations using actual weather and interruption data and will be probabilistic rather 

than deterministic, providing a means of risk assessment rather than a fixed value for the 

number of interruptions that can be expected. This provides a real capability to determine 
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risk. The R2 value of the predictions will be a statistic of interest for daily and by shift 

predictions, while narrower periods would include hourly risk probability assessments. 

3.4.3 Combined Effects of Modeled Parameters  

The equations of the models defined in sections 3.3.3, 3.3.5, 3.3.6, and 3.3.8 were 

combined to give a composite model of the effect of weather on N. The results from the 

aforementioned equations along with the combined equation, were compared with that 

which does not model the weather parameters. The combined equation for the raw 

weather data is as follows: 

  (3.12) 5N Y A T B R C S D LS= + × + × + × + ×

The combined equation for the modeled data is as follows: 

  (3.13) 

2 2
6 1 2 3 4

2 3
1 2 3 1 2

3 1

1 2
3

N Y A HD A HD A CD A CD

B S B S B S C R C R
C R D LS

= + + + +

+ + + + +
+ +

Regression analyses were performed on each of the five MAs individually using 

(3.1),(3.8),(3.9),(3.11),(3.12) and (3.13). Chosen as the statistic of interest, the R2 value 

of the regression equation, called the multiple coefficient of determination, describes the 

proportion of the total variation accounted for by the predictor variables [52]. Because 

our datasets had three years of daily data, the result of the additional seven new variables 

(degrees of freedom) caused us to negate the adjusted R2 (penalizing a model for having 

too many degrees of freedom). 

65                                                                                               

 

The regression analysis done on the weather and N data with the raw data, (3.12), 

showed R2 values ranging from 36.9% to 43.3% for different MA’s. The regression 

analysis on weather and N data with the modeled equation, (3.13), showed values ranging 

between 45.2% and 50.1% for different MA’s. Similar results occurred when applying 
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the regression to individual weather parameters. The results are shown below in figures 

3.18 and 3.19. 

 

Figure 3.18. R2 Values of Modeled Versus Raw Weather Data by MA and by Weather 

Parameter [47] 

 

Figure 3.19. R2 Values of Modeled Versus Raw Weather Data by MA [47] 
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To determine whether the association between the response and the predictor(s) in 

the modeled equation are statistically significant, it is necessary to set an α level and 

compare the p-value for each predictor against the α level. The usually accepted α level is 

0.050, and if the p-value is larger than this, the predictor is considered statistically 

insignificant. Table 3.2 below lists the p-values for each predictor by MA. 

 

Table 3.3. P-values by Predictor and by MA [47] 

       1     2     3     4     5 
Constant 0.000  0.010  0.183  0.000  0.000 
HD  0.719  0.000  0.795  0.003  0.003 
HD2  0.633  0.000  0.141  0.013  0.039 
CD  0.545  0.230  0.869  0.153  0.910 
CD2  0.003  0.105  0.035  0.210  0.003 
R1  0.001  0.000  0.000  0.000  0.000 
R2  0.000  0.000  0.000  0.000  0.000 
R3  0.000  0.000  0.000  0.140  0.000 
S  0.000  0.083  0.459  0.000  0.004 
S2  0.000  0.057  0.079  0.000  0.008 
S3  0.003  0.210  0.000  0.002  0.075 

 LS  0.000  0.000  0.000  0.000  0.000 
 

Figures 3.21 and 3.22 show that the modeled equations return a consistently 

higher R2 value than equations that rely only on raw weather data. This consequently 

accounts for a larger percentage of the variance from the mean number of interruptions 

experienced on a daily basis. It is not surprising to note that although lightning seems to 

have a dominant role in Florida, there is no single weather parameter that can be labeled 

as the primary cause. It is apparent that there are some combinatorial effects, since the R2 

value of the combined equation is not the sum of the R2 values of its components. For 

example, lightning rarely occurs unaccompanied by wind and rain, but high winds and 

rain do occur quite often without lightning, so the role of lightning may be overstated by 
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the fact that it has the largest R2 value (figure 3.18) of all the weather parameters. Also, it 

appears from the R2 values for average temperatures, that it does not play a significant 

role in N. Figure 3.20 below shows a histogram of the temperatures that occurred over 

the study period. The area under study had a relatively narrow range of commonly 

occurring temperatures, with 95% of the average temperatures recorded ranging from 60 

to 86 degrees, a 27-degree spread, which may not be true for regions outside of Florida.  
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Figure 3.20. Percentage of Occurrences of Average Temperature for Combined Datasets 

[47] 
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Some explanations for large p-values are uncommon occurrences of that variable 

in the dataset, or very small coefficients. In addition, when variables have large p-values, 

their contribution to the R2 value is marginal. Although HD and HD2 rates model 

predictors as rejections 4/10 times in Table 3.2., figure 3.20 shows that there may not 

have been enough days below the OT to consider them significant. CD, on the other 

hand, does not seem to be significant in any of the MAs. This is partly due to the 
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dominance of the second order CD2 term in the heavily skewed figure 3.20. The two 

times that CD2 is rejected, neither HD or HD2 is rejected, supporting the belief that the 

actual distribution of heating and cooling days among the MAs is very different than 

figure 3.20 suggests.  

Because South Florida has a climate that is unique and different from the majority 

of the rest of the country, none of these temperature variables should be rejected from a 

study until it can be shown that they are indeed insignificant. In only one instance, a rain 

variable come close to rejection while the wind variables are, for the most part, 

acceptable. It must again be noted that lightning in South Florida is very significant and 

that different regions of the country would have different p-values for different 

predictors. HD and HD2 would likely be more significant in Chicago than in Miami, and 

the wind variables would probably dominate in regions that are incorporating wind farms 

such as the Midwest. 

Disregarding the possible combinatorial effects of the weather parameters, or the 

occasionally large p-values, the consistent improvement of the R2 values (whether in 

isolation or in combination) shows that the modeled equations are valid. Furthermore, it 

is speculated that the development of new models for the impact of weather conditions on 

N will provide for better correlations. Another useful study would be to attempt to reveal 

some of the combinatorial effects by designing a non-linear closed loop (using neural 

networks). Combining linear modeling (as demonstrated in this document) with non-

linear modeling (as suggested for further study), a final model may be constructed. With 

the high demand for power along with scarce resources, the weather impact on total 

number of interruptions will be a major point of focus for study in the future. 
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3.4.4 Design and Risk Assessment for a Predictor 

 Using three years of daily interruption and weather data, the models presented in 

[47] were developed. The analysis was performed with statistical and neural network 

software which led to the development of the models. The data set used included weather 

and interruption from six management areas (MAs). for approximately 5400 exemplars. 

A multivariable regression analysis was conducted with the total number of daily 

interruptions as the target value and the regressors were the total daily rainfall, the 

maximum two minute sustained wind gust speed and the total daily number of lightning 

strikes respectively. The other analyses were for function approximation using a one 

hidden layer back propagation neural network. For both analyses, the same data was used 

for training to develop a regression equations and to train the neural network. Another set 

of data called ‘test data’ were applied to both the regression equation and the trained 

network. The R2  was then calculated using the actual number of interruptions as the 

target value and the predicted number of interruptions by the earlier two methods as the 

regressors. 

 The results showed that the trained neural network results were consistently better 

(in terms of a higher R2 value). This demonstrates that there are hidden effects that were 

not accounted for in the regression equation with the raw data.   

     In the next step the multivariable regression analyses was done using the modified 

dataset. Around 19 variables were used utilizing all the individual models developed to 

do regression analyses with the target value being the actual number of interruptions. The 

same variables and corresponding dataset was used to train the neural network 
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breadboard. The results from this analyses were that for both the multivariable regression 

equation and for the trained neural network where the R2 values were higher. 

 Figure 3.21 shows R2 values for the five MAs. The comparison in this figure is 

done between the statistical analyses using the raw data and the regression analyses done 

by simulations using the modeled data. The results are that the simulation done with the 

modeled data shows consistent higher R2 values as compared to the  R2 values coming 

out of the analysis with the raw data. 

                             

 

Figure 3.21. R2 Values of Five Regions 

By including barometric pressure as another weather variable, and the recent daily 

interruption data that reflects the weather trend (system variable), it increases the R2 

values by an average of 50%.  
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A part of this study was also done by simulating a neural network model using 

weather data from more than 10 management areas. Although the study took time and 

recording data at many points became cumbersome; the results were very interesting. It 

was seen that as we increase the geographic area and try to predict the number of 

interruptions for the whole region, the accuracy of the system decreases (as expected).  

The accuracy of the system improved by increasing the number of rows of data 

and by reducing the duration of the data collected. The figure 3.22 shows a snapshot of 

one week of 2008 of actual and the predicted values from six MAs.  
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Figure 3.22. Predictor Value vs Actual N for multiple MAs 

Another snapshot is given in the form of a histogram in figure 3.23. Given on the 

left hand side is the actual number of interruptions (N) and on the right is the predicted 
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number of interruptions. This pattern was similar for all the simulations and the 

histogram shows results of 4 years of combined dataset with multiple MAs. 
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Figure 3.23. Actual and Predicted Numbers of Interruptions  
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The statistical distribution is similar except that the predictor is predicting a lower 

number of smaller values as compared to a lower value of actual number of interruptions. 

This pattern changes if we have a larger dataset to test. Thus, there is remarkable 

improvement as we keep on adding data to the predictor. A Positive effect on this 

particular simulation was that the R2 value returned was 61.3%, which was much higher 

than what we were getting as in earlier results. This further shows that the size of the data 

set is extremely important in achieving better results. 

 Furthering the research, the analyses were done using neural network function 

approximation. An interesting study was concluded showing that although the predicted 

value for any given time may not be completely accurate, but a risk assessment calculator 

can be developed on that basis.  

 

Figure 3.24. Neural Network Function Approximation 

Many histogram charts were developed by finding for each value of interruptions 

predicted, what the actual number of prediction at that instance were. To better explain; 
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in figure 3.24 a histogram is shown for the days when the predictor predicted ‘nine’ 

interruptions. The bar of the histogram displays the number of actual interruptions (N) in 

terms of percentage. On the right side, the cumulative probability is listed based on the 

actual interruption of the possibility of having up to N interruptions. 

From the cumulative distribution chart, it can be seen that if the predictor predicts 

9 (nine) interruptions then with more than 92% confidence level, one can state that the 

number of interruptions won’t be more than 14. This predictor will be a strong tool in the 

smart grid configuration of modern grid structure. The positive speculations for smart 

grid are that there will be a predictive and self-healing capability in the grid. Applications 

like this unique predictor can provide this. Furthermore, risk assessment is a strong tool 

that can be used by the management to achieve maximum efficiency when planning the 

amount of long and short-term manpower and equipment inventory. This effort is a patent 

property of the University of South Florida, Tampa, USA. The predictor Electric Power 

Distribution Interruption Risk Assessment Calculator (EPDIRAC®) has a USF patent 

and related software has USF copyrights. 

 Another unique aspect of this study was to develop methods for benchmarking the 

dependability of the utilities power delivery service. By normalizing the reliability 

indices with respect to weather, fair comparisons between the past and present 

performance of a utility, or between the performances of different utilities, can then be 

made. Problems that interfere with fair assessments of a system’s reliability, beyond the 

control of the system operator include: The variability of reliability (and by extension 

reliability indices) from system to system or from year to year within a system [50]. Thus 

developing models for the normalization of reliability indices for weather is a necessity. 
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A thorough literature search has turned up only one methodology for normalizing 

reliability indices for weather, and that methodology relies on a single weather variable: 

lightning [51, 52]. Although this methodology is well considered, its application is 

limited to areas where lightning is the dominant weather variable. In chapter 4, we 

provide insight to the basic concepts being utilized in this study. A novel method for the 

normalization of reliability indices is suggested in chapter 5 of this document. 

 

 

. 
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CHAPTER 4: SMART GRID RELIABILITY PARAMETERS AND INDICES 

   

A smart grid consists of variety of power components such as transformers, 

generators, and overhead lines. The reliability of the smart grid is one of the most 

important areas of reliability theory application. Random failures are certain to occur 

from time to time, especially when extremes in weather or other causes present hazards 

that the power system was not designed to withstand. During these extreme conditions, it 

is not acceptable that the power system be permitted to collapse and cease operating. 

Reliability methods also provide important analytical tools that can be used to evaluate 

and compare smart grid design, breakers, underground cables, and so on. Each 

component has its unique characteristics. From a reliability point of view, component 

models are critical to the system reliability. The models should be as simple as possible, 

but they need to represent all the features, critical, to the system reliability. In this 

chapter, we will introduce typical reliability parameters, and how they can be modeled 

[39].  

4.1 Probability Distribution Functions 

Reliability parameters vary from component to component or from situation to 

situation. For example, expected repair time is the average repair time of the component 

considering many failures. After each individual failure, the actual repair time may be 

lower or higher than the expected value. Because the actual repair time varies, it is 
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referred to as a random variable. Random variables are represented by probability 

distribution functions [54,55]. 

Probability distribution functions transfer a large amount of data to an equation 

described by few parameters. An associated function to the probability distribution 

function is the density function, f(x), which represents a particular value at which a 

random variable, t, will be.  

             f- probability density function                                (4.1) ( ) [ ]1,0∈tf

where 
                                                                    

 (4.2) ( )∫ =1dttf

The integral of the probability density function is cumulative distribution function 

which reflects the probability that f(t) will be equal to or less than t.  

   ;  where F = cumulative distribution function   (4.3) ( ) ( )txtftF
t

∫
∞−

=

 A function that combines both the probability density function and the cumulative 

distribution function is the hazard function, ( )th

( )

 . The hazard function is equal to the 

probability of failure for a component which has not already failed. The density function 

is the probability of a component failure, and the cumulative distribution function is the 

probability that it has already failed. The hazard rate can be mathematically expressed as 

[39]:        ( )
( )tF

tfth
−

=
1                                  (4.4) 

Several distribution functions are often used in practical engineering reliability 

problem calculations. They are divided into [55]:  

Discrete Distribution Functions 

• The Discrete Uniform Distribution 
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• The Binomial Distribution 

Continues Distribution Functions 

• Normal Distribution  

• Lognormal Distribution 

• Exponential Distribution 

• Gama Distribution 

• Weibull Distribution 

• Uniform Distribution 

• Raleigh Distribution 

Presented here are Probability Distribution Functions that are most often used in 

smart grid reliability evaluation.  

4.1.1 Normal Distribution Function 

 It is characterized by two parameters:  Expected Value μ ,  and  Variance  σ . The 

formula corresponding to the normal distribution function is:  

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡ −
−=

σ
μt

σ
tf

2
exp

2
1 2

; ∞≤≤∞− t   (4.5) 

4.1.2 Exponential Distribution Function 

 The exponential distribution function is the most widely used function in the 

calculation of reliability in engineering. It is characterized by a constant hazard function, 

which represents electrical components during their lifetime. Another advantage of the 

exponential distribution function is that is represented by a single parameter, the expected 
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valueλ . The exponential distribution function is the probability of a component 

surviving a time t with a constant failure rate. The formula is:  

( ) tλeλtf −= ;                                             (4.6) 0≥t

4.2 Component  Reliability Parameters  

 Smart grid components can be described by a set of reliability parameters. 

Sophisticated models use many such reliability parameters. All of the reliability 

parameters are important, but component failure rates have historically received the 

highest attention. This is because failure rates have unique characteristics and are 

essential for all types of reliability analyses. For our research, the simplified reliability 

models are used based on component failure rates and component repair time. 

 The Mean Time to Failure (MTTF). The parameter that is characterizing the 

failure process. It is the time to failure, for designated lifetime, T. It is the time elapsed 

from zero to the first failure of the component. The T is a random variable and it is not 

possible to predict exactly when the unit will fail. However, we can compute the 

expected value or the mean value [55]:  

( )dtttfmMTTF T∫
∞

==
0

;  (4.7) 

Where:  

t  is the time  

Tf  is derivative of the failure distribution   

Mean Time To Repair (MTTR).A repair process can be described the same way as 

the failure process in terms of a failure distribution and failure density function. MTTR 

represents the expected time that will take a failure to be repaired (measured from the 
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time that the failure occurs). MTTR is typically used for each component, but separate 

values can be used for different failure modes. It is not possible to predict time of repair, 

so we will compute the mean time to repair:  

( )dtttgrMTTR ∫
∞

==
0

;  (4.8) 

Where:  

t  is the time  

g  is derivative of the repair distribution   

 

4.3 Component Reliability Data 

  Electrical reliability data is a very important parameter of the smart grid 

reliability assessment. It is based on historical utility data, manufacturer test data, 

professional organizations such as IEEE, and other technical conferences and journal 

proceedings [54].  

4.3.1 Overhead and Underground Lines 

 Primarily we are focusing on overhead distribution lines that have voltage ratings 

between 5kV and 35 kV. Overhead lines are directly exposed to variations of weather 

conditions, vegetation, and animals thus, higher rate of failures are expected. At the same 

time the overhead lines failure is relatively easy to locate so the repair time is shortened.  

The reliability of underground lines and equipment is higher than the overhead 

lines, primarily because they are sheltered from vegetation and weather. However, the 

faults are difficult to locate so the repair time is longer.  
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4.3.2 Power Transformers 

 Accurate reliability data on power transformers is necessary for evaluating the 

smart grid reliability. Failure rates depend on the age, size, and type of the transformer ( 

liquid or dry type) , voltage rating, indoor or outdoor, etc [56]. The mean time to repair of 

power transformers is very variable.  

4.3.3 Power Generators  

 The generator reliability data is categorized in two major groups: continuously 

applied and emergency or standby generator units.  

4.4 Smart Grid Reliability Indices 

Standards like, IEEE Guide for Electric Power Distribution Reliability Indices 

(IEEE 1366) were developed to summarize reliability indices (see Appendix A). Also, the 

standards outline the methodologies for calculating these indices, and indicate the factors 

that affect the calculation of them. The standards define a long interruption as an event 

where the voltage at the customer's connection drops to zero and does not re-establish 

automatically. If the interruptions’ time is in excess of three minutes then the interruption 

is referred as a long interruption. An interruption less than three minutes is called a short 

interruption. These definitions vary from utility to utility and are not accepted as general 

definitions. Additionally to this, the term "sustained interruption" refers to a longer 

interruption, ranging from three seconds in IEEE 1159 to two minutes in IEEE 1250 [57]. 

As mentioned previously, many different reliability indices have been proposed 

and are being used. They can be divided into four main categories: 

• Indices that measure the frequency of sustained interruptions. 

• Indices that measure the duration of sustained interruptions. 
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• Indices that measure the frequency of momentary interruptions. 

• Indices that measure the frequency and depth of voltage sags. 

• The first two categories have been considered "reliability" issues, while the 

last two have been considered "power quality" issues. Although there are 

historical reasons to make the distinction between reliability and power 

quality, for today’s loads the sustained interruptions and momentary 

interruptions are treated the same.  

      The main reliability indices used for sustained interruptions (outages in excess 

of five minutes while excluding major event days) are [57]: 

• System average interruption frequency index (SAIFI), 

• System average interruption duration index (SAIDI), and 

• Customer average interruption duration index (CAIDI). 

SAIFI describes how often an average customer will experience a sustained interruption 

(greater than five minutes). It is defend as: 

TN
CISAIFI =

                             (4.1)
 

where CI is the number of customers interrupted and  is the total number of 

customers served for the area.  

TN

SAIDI is defined as the total duration of an interruption for an average customer over a 

specific period. The index is defined as: 

 TN
CMISAIDI =

                                       (4.2)
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where CMI is the customer minutes interrupted. In terms of load-based indices, the 

average system interruption frequency index (ASIFI) is often used to measure 

performance in areas with few consumers and concentrated loads. ASIFI is defined 

as: 

T

i

L
L

ASIFI ∑=
                                              (4.3)

 

where, ASIFI is the ratio of total connected kVA of load interrupted and the total 

connected kV A served. SAIDI and SAIFI are two of the most common 

reliability indices used in the industry.  

Component reliability data is a very important parameter of the smart grid 

reliability assessment. In our research, we will use reliability information based on 

historical utility data, manufacturer test data, professional organizations such as IEEE 

and other technical conferences and journal proceedings .Electrical equipment reliability 

data is usually obtained from surveys of individual industrial equipment failure reports. 

Collection of reliability data is a continuous process and it is constantly updated. 

The smart grid reliability indices described above are used to quantify sustained 

interruptions. Short duration outages for some customers, such as hospitals and large 

industrial customers, can result in complex systems shutting down. These customers 

usually have a backup generation or other means of addressing short-duration outages. In 

particular, it is these types of outages would benefit from the presence of distributed 

generation and energy storage. Therefore, a reliability index must not only quantify 

enhanced reliability for sustained interruptions, but must also quantify enhanced 

reliability for short-duration outages.  
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CHAPTER 5: NORMALIZATION OF RELIABILITY INDICES 

 

  Power companies are constantly striving to improve their reliability performance. 

The comparison of present performance from past performance is one method that 

companies use to identify changes in performance. Because of seasonal changes in the 

weather, these comparisons are often made between the present month and the same 

month in the previous year. However, because of weather patterns that can shift from 

year to year, it is difficult to separate the baseline performance from the overall 

performance. A method of normalizing reliability indices is needed so that engineers can 

evaluate a system’s performance without guessing at the usually highly significant role of 

weather conditions. 

5.1 Performance and Reliability Indices 

There is already a method being used in Florida, (where the power system under 

study is located), that can adjust the reliability indices for extreme and catastrophic events 

- the exclusion. The Florida Public Service Commission (PSC) allows the exclusion of 

certain interruptions from the calculation of reliability indices including, but not limited 

to, those “directly  caused by…planned interruptions, a storm named by the National 

Hurricane Center, a tornado recorded by the National Weather Service, ice on lines, a 

planned load management event, an electric generation disturbance, an electric 

transmission system disturbance, or an extreme weather or fire event causing activation 
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of the county emergency operation center” [58].  Interruptions not included in the above 

definition can be excluded by petition [59]. 

Another method of normalizing reliability indices has been suggested in [51]. 

This method is based on the fact that in many areas of Florida, lightning plays a key role 

in the increase of the number of interruptions (N), and the subsequent increase in other 

reliability indices. However, there are no methods described that will allow a utility to 

normalize their reliability indices for the effects of common weather conditions that 

include rain and wind. Such a method would be useful in areas where lightning does not 

play as significant a role and during times of the year when lightning is not as common. 

In addition, modeling the effects of wind, rain, temperature, and lightning on the number 

of daily interruptions described in [47] has shown that rain and wind will also contribute 

significantly to degraded reliability. 

5.2 Baseline Comparison and Other Methods 

 Figures (5.1-5.3) show the mean values of total daily rainfall (Rain), number of 

lightning strikes (LS) and N by month and year for one of the management areas (MAs). 

A recognizable general pattern can be identified, that of a summer peak in interruptions 

with a winter falloff, but that it varies from year to year in its specifics. Sometimes the 

cause of that variation in N can be seen in the weather charts, such as the 2003 N pattern 

in months 4-9 coinciding with the 2003 pattern of LS, or the 2001 N pattern in months 5-

10 corresponding to the 2001 pattern in the Rain figures. 
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Figure 5.3. Mean of Rain by Month and Year 

However, these patterns are difficult to see, are open to debate and provide little 

useful information. Further, there are other spikes in the figures in which the cause cannot 

be determined by averages, but may still be due to a single unseasonable event. The one 

inarguable conclusion that can be drawn from these figures is that reliability indices are 

subject to shifting seasonal weather variations. Because of the year-to-year variations in 

monthly averages, reliability reports that do not adjust for variations in seasonal weather 

patterns would be likely to result in misleading conclusions. The method described in this 

document finds statistical outliers in both common weather and interruption data, and 

uses these outliers to identify days where common weather conditions interfere with the 

evaluation of baseline performance. The reliability indices are then adjusted for use 

during comparative studies. 

Because it is equally likely that the present year could have milder weather and 

consequently fewer interruptions, this method provides a bilateral analysis with the result 

that the  monthly interruption count, and the associated measures and indices, are equally 
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as likely to be adjusted up or down. This method simply seeks to even the field so that 

reliability engineers may focus on other reasons for any shift, up or down, in the 

reliability indices without the guesswork involved in evaluating the effects of weather. 

5.3 Assumptions and Statistical Tools 

 The primary assumption that this method relies upon is that, barring any unusual 

differences in the operational or environmental conditions that a system experiences, the 

daily reliability measures should have a high correlation from year to year. 

Although there are many reasons that the daily measures may not correlate from year to 

year, such as improved maintenance, increased under-grounding of overhead conductors, 

or a majority of equipment reaching the end of their service lives; weather is certainly a 

significant factor. 

The second assumption this method employs is that accounting for the variance 

caused by any of the above factors, or any others that are not mentioned, will increase the 

correlation. It is contended in this document that, no matter where in the range the 

unadjusted correlation lies, if the method described consistently and positively improves 

that correlation by adjusting the N, associated customers interrupted (CI) and customer 

minutes interrupted (CMI) counts, then some portion of the effects of common weather 

have been accounted for. The interpretation of a zero correlation improvement would be 

that weather patterns did not change. 

The statistic of interest for the evaluation of the method proposed in this 

document is the Pearson correlation coefficient (rho) as given in (5.1). 

( )( )
( )

1
1

n
X X Y Y

i
n s sx y

ρ
− −∑

==
−             (5.1) 
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Where:  

• X  = sample mean for the first variable 

• sx = standard deviation for the first variable 

• Y  = sample mean for the second variable 

• sy = standard deviation for the second variable 

• n  = number of paired data points 

The correlation coefficient measures the strength of the linear relationship 

between two data sets, has a range of -1 to 1, and is neutral to the means of the variables 

being correlated. 

Another statistic that is often reported for correlations is the p-value. The p-value 

is a measure of the strength of the correlation; however, confidence intervals have been 

reported since they provide a measure of the accuracy of the correlation as well as the 

strength. The confidence intervals for the correlations in this document were calculated 

by first using the Fisher z-transform. The transformed correlation (z) is a standard normal 

distribution. 

(1 )
0.5 ln

(1 )
z

ρ

ρ

+
=

−

⎡ ⎤
⎢ ⎥⎣ ⎦             (5.2) 

The confidence limits of z are found by applying the inverse standard normal 

distribution function, which does not have a closed form and must be computed 

numerically: 

100 %

200
3

confidence
NORMSINV

z z
n

−

′± = ±
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

           (5.3) 
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 The confidence limits for z (±z΄) are then transformed back to confidence limits 

for ρ as shown in (5.4). 

±

2( 1
2( 1

ze
CL ze

ρ
)

)

′± −
= ′± +

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦           (5.4) 

Figure 5.4 shows a family of curves for the confidence intervals for n paired data 

points between 5 and 1500 with a ρ of 0.1, 0.5 and 0.9. 
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Figure 5.4. Confidence Intervals as a Function of n and ρ 

It is apparent from figure 5.4 that the confidence intervals have inverse 

characteristics, though non-linearly proportional to both the number of paired data points 

and the magnitude of the correlation.  

5.4 A Novel Method 

 As was shown in figures 5.1, 5.2, and 5.3, there are seasonal weather patterns that 

can be seen in the monthly averages, and since this method is intended to find outliers in 

common weather conditions, comparisons must be made between relatively small 

samples. Outliers found using an entire year’s worth of data would represent extreme 

weather conditions and would be clustered in the summer and fall months offering little 
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or no opportunity to normalize the reliability indices year-round. Monthly sampling was 

chosen because it is a period of time after which comparative reliability studies are often 

done. It is also a relatively small sample to capture outliers that would otherwise be lost.  

However, in Florida, occasionally, there are months where the number of days 

reporting non-exclusionary interruptions is much less than 30. August and September of 

2004 are such months, reporting less than eight days each month due to back-to-back 

hurricanes. These months were not included in the analysis and would not have benefited 

from normalization at any rate. Therefore, the total number of months normalized from 

2001 through 2004 is 46. 

For these reasons, monthly sampling provides the most accurate comparison of 

one year’s common weather conditions to another year’s common weather conditions. 

Since 1981, there has been a program to build Automated Surface Observation Stations 

(ASOSs) at airports throughout the US. These stations were primarily intended as a 

weather data source for aviators, but have since turned out to be the best source of 

historical surface weather data in the US. Since 1996, the National Climatic Data Center 

(NCDC) has been making ASOS data available as an online download. This data includes 

daily and hourly summaries in ASCII format from every ASOS in the country. 

Five years of daily summary ASOS data (2000-2004) was collected from the 

NCDC for weather stations located within or near nine MAs in the area of study. The 

value for wind was chosen to be the 2-minute maximum sustained gust (2MMaxS) and 

for Rain, total daily accumulation.  

One of the largest utilities in Florida provided N and LS data from their records 

for the MAs of interest. Because this method is designed to normalize reliability indices 
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for common weather conditions, the N data was segmented to exclude interruptions that 

were either administrative in nature (tickets written in error, no loss of service (NLS), etc) 

or that were deemed exclusionary by the PSC as described in the introduction. Further, 

many of these exclusionary interruptions were due to extreme weather conditions, such as 

hurricanes, that require the exclusion of the entire day’s interruptions. In the latter case, 

the weather for that day in that MA was also excluded from the calculation of the weather 

outlier limits. 

In terms of bilateral analysis, weather and interruption data was compiled for five 

years for nine MAs, and four separate studies were performed for each MA. An example 

of a study performed is 2001 versus 2002 with 2002 being the year that is to be adjusted. 

In this case, 2001 was initially used as a reference year, providing the outlier thresholds 

that the 2002 weather was compared against, and then the analysis was reversed with 

2002 as the reference year and 2001 as the target year. 

Weather outliers were identified as those days in the target years that had weather 

values above the reference outlier limits. All outliers were tabulated, and those days that 

had interruptions greater than the N outlier threshold for the month, that also occurred on 

the same days as one or more weather outliers, were defined as intersections.  

 The determination of how much the 2002 N would have to be adjusted was made 

daily, by subtracting the 2002 interruptions that were found to be related to a weather 

outlier (defined by the 2001 outlier limits), and adding the 2001 interruptions that were 

found to be related to a weather outlier (defined by the 2002 outlier limits). In this 

manner a bilateral analysis was achieved that allowed for the possibility that the 2002 

weather was much milder than the 2001 weather and that the 2002 N would subsequently 
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have to be increased in order to perform a comparative reliability study that was not 

skewed by variable weather patterns. 

 This study compared four daily values: N, 2MMaxS, Rain, and LS. The following 

discussions of the shapes of the data sets and the distributions they most closely resemble 

provide the rationale for the choice of thresholds beyond which we determine that a data 

point is an outlier. Histograms and probability plots of the actual data will be used to 

show the fit of the data to the distribution chosen to model it.  

 The following figures and plots are representative of all the ASOSs and MAs. 

Interruptions (N): It is well known that interruption data (N) follows the lognormal 

probability distribution and have been verified using probability plots of the data 

provided. The data must first be transformed by taking its natural log. The transformed 

data will follow a normal distribution, so to determine the threshold above which the 

target data will be compared to the weather outliers, the mean, plus some number of 

standard deviations of the transformed target data, the following equation was used: 

Threshold= Aα β+           (5.5) 

Where α is the mean of the transformed target data, β is the standard deviation of the 

transformed target data, and A is the number of standard deviations wanted. This 

transformation and the associated threshold calculations are performed on the target data. 

  The wind data defined by the 2MMaxS is most closely modeled by the Largest 

Extreme Value, or the Gumbel (maximum case) probability distribution. A probability 

plot of the 2MMaxS data is shown in figure 5.5. It should be noted that the 2MMaxS data 

is limited to integer values, thus it cannot be made to fit as well as a randomly generated 
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Gumbel distribution, although the fit is quite good for a naturally occurring data set as 

can be seen by the Anderson-Darling value of 2.22. 
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Figure 5.5. Probability Plot of 2MMaxS Data 

The procedure used to find the outlier threshold is as follows. The location and 

scale parameters of the 2MMaxS data, μ and β respectively, must first be estimated from 

the reference data. The equations for estimating these parameters are as follows. 

6
 = 0.5572     and     

s
Xμ β β

π
− =       (5.6) 

Where X  and  are the sample mean and standard deviation of the reference data 

respectively.  

s

For this distribution, unlike the normal or lognormal distributions, there is a 

closed form percent point function. The percent point function is the inverse of the 

cumulative probability function in that it calculates the probability that a member of the 

data set is greater than or equal to x for a given x. The percent point function is given in 

(5.7). 

( ) 1
G p Ln Ln

p
= −

⎛ ⎞⎛ ⎞
⎜ ⎜ ⎟

⎝ ⎠⎝ ⎠
⎟           (5.7) 
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Where p is the percentage under the curve expressed as a fraction of one. A 0.9 

percentage, meaning that 90% of the data will be under the curve at that percent point, 

can be calculated as a 2.25037 percent point (G (p)). This is a fixed value, independent of 

the location and scale parameters. 

To apply this function to the target data, the target data must first be standardized 

using the location and scale parameters, μ and β, of the reference data. However, it is not 

necessary to transform the reference data, merely calculating the location and scale 

parameters of the reference data. The location and scale parameters of the reference data 

can then be used to standardize the target data using the following equation. 

( ) ( )x
G x

μ

β

−
=               (5.8) 

Following this standardization, approximately the top 10% of the data, depending 

on fit, will be greater than or equal to 2.25037. By using the location and scale 

parameters of the reference data to standardize the target data, shifts in the range of 

values, which may occur due to annual variations in weather patterns, will be transferred 

to the standardized data. Then the outlier threshold will be 2.25037. Figures 5.6 and 5.7 

illustrate how the data will shift using the prior year’s parameters. 
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Figure 5.6. Histogram of 2003 Standardized 2MMaxS Data 
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Figure 5.7. Histogram of 2003 2MMaxS Data Standardized with 2002 Location and Scale 

Factors 

Although this seems more complicated than the lognormal transformation, it is 

actually simpler because the percent point function is in closed form, and the outlier 

threshold is fixed. 

 The Rain and LS data did not fit any of the standard distributions because a large 

percentage of the data was zeros. The remainder of the data had, as a general 
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characteristic, a heavy grouping of data points at the lower values with individual 

extreme values spread across a large range.  
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Figure 5.8. Histogram of Rain 
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Figure 5.9.  Histogram of LS 

Figures 5.8 and 5.9 show the distribution of the data. Because of the large Y scale, 

there are many individual data points on the X scale that cannot be shown, but an idea of 

the shape of the data can be developed by observing that the X scale is limited by the 
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largest value in the datasets. Because of the fact that no distribution could be found to fit 

the data, Tchebysheff’s Theorem was used to estimate the outlier limits. Tchebysheff’s 

Theorem [5] states that for a certain number, K, of standard deviations, a certain 

minimum percentage of data points will always fall within plus or minus the mean plus K 

standard deviations regardless of the distribution. The following equation gives that 

percentage and can be solved for any number K, with K not limited to integer values. 

1
Percentage 1 2K

= −
⎛ ⎞
⎜ ⎟
⎝ ⎠          (5.9) 

Although this equation defines the maximum number of standard deviations 

required for a specific percentage of the data to be under the curve, the actual number of 

standard deviations must be determined empirically. 

  The choice of outlier thresholds for the variables in this method cannot be 

determined definitively, but must be approached heuristically. A theoretical basis 

combined with an empirical application provides the choices with optimal results. An 

outlier threshold that is generally accepted is the mean plus three standard deviations of a 

normal distribution which puts approximately 99.77% of the normally distributed data 

under the curve. This provided a basis for the choices for the thresholds for the Rain and 

LS reference data. The Rain and LS distributions in Figures 5.8 and 5.9 suggest that even 

at that level, the most damaging days will still be captured. Additionally, there are many 

months with very little or no Rain or LS, in which case the location and scale factors 

applied to the target data would both be zero, effectively making any day with Rain 

and/or LS an outlier. Direct experimentation showed that the optimal thresholds were 

nearly the same as the normal mean plus three standard deviations. 
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Wind has a cubic relationship with the number of interruptions [47], [53] and after 

approximately a 25 mph 2MMaxS the effect is magnified substantially. The use of the 

99.77% standard for a 2MMaxS outlier would set the threshold at over 35 mph, 

effectively eliminating many possibly extreme damaging wind values. Furthermore, the 

weather data is taken at a point source and the interruption data is taken from an area 

source. As such, the 2MMaxS was considered an indicator of the wind conditions for that 

day rather than a definitive value. The threshold was chosen so that lower values could be 

captured. 

The threshold for the interruption data, N, was chosen to be the mean plus 0.8 

standard deviations of the log transformed target data. Since the location and scale factors 

of the N data apply to the target data, it was determined that the upper 20% of the N data 

should be available for comparison with the weather outliers that are defined by the 

location and scale factors of the reference data. The purpose of this is to allow for those 

days that have a high number of interruptions whose causes are not related to the weather. 

Further, a high threshold would limit the effectiveness of the method by denying the 

ability to cross-correct (when several days in the same month have both positive and 

negative adjustments, thereby canceling). 

Table 5.1 shows the location and scale factors (or percentage point) chosen and 

the percent of the data that is under the curve when the location and scale factors are 

applied to the data from which they are derived. 
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Table 5.1. Location and Scale Factors 

     Rain  Wind  LS  N 
Location and Scale   μ+5.15σ G(p)=2.00 μ+5.15σ α+0.8β 
Percent Under Curve   99.67  86.23  99.11  79.82 
 
5.5 Effectiveness of Results 

 Five years (2000-2004) of both interruption and weather data were collected with 

the first year having its measures adjusted (2001). For the four years when measures were 

adjusted (2001-2004), there were approximately 1,350 (allowing for missing data) paired 

data points available for correlation in each MA for each measure. Figures 5.10, 5.11, and 

5.12 and Table 5.2 show the correlation improvements for each daily measure. For 

maximum clarity, the data has been sorted from the lowest post-adjustment ρ value to the 

highest. 
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Figure 5.10. Pre and Post Adjustment ρ by MA for 4 Years Daily N with 95% 

Confidence Intervals 
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Figure 5.11. Pre and Post Adjustment ρ by MA for 4 Years Daily CI with 95% 

Confidence Intervals 
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Figure 5.12. Pre and Post Adjustment ρ by MA for 4 Years Daily CMI with 95% 

Confidence Intervals 
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Table 5.2. Overall Improvements in rho 
 

 n≈1350 
 Avg.  95% Confidence Interval ≈ ρ ± 0.048 
      N  Cl  CMI 
 Maximum    0.567  0.380  0.566 

Average    0.457  0.301  0.385 
Minimum    0.303  0.205  0.133 

 
It can be seen from figures 5.10, 5.11, and 5.12 and Table 5.2 that in each case, 

the adjustments performed by the proposed method resulted in a medium to strong 

improvement in the linear relationship between the two years’ daily measures. It can also 

be seen that for most of the trials, there was either little, none, or negative linear 

relationship between the two years for CI. A discussion of correlation coefficients 

requires some way to characterize their absolute, or in the case of comparisons, relative 

magnitudes. A general rule of thumb for magnitude characterizations is shown in Table 

5.3. 

Table 5.3. Correlation Magnitude Characterizations 

 0.0-0.1  0.1-0.3  0.3-0.5  0.5-0.7  0.7-0.9 
Clinically Small  Moderate Large  Very 
Trivial        Large 

 
It can be seen by applying these characterizations to the correlation improvements 

shown in figures.5.10, 5.11, and 5.12 and Table 5.2 that the improvements in the adjusted 

measures range from small to large with a moderate average. It can also be seen that the 

correlations of the unadjusted measures is small or for the most part, clinically trivial. It 

is reasonable to assume, based on these results, that the use of the adjusted measures to 
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calculate the reliability indices N, SAIFI, SAIDI and CAIDI should result in a stronger 

linear relationship between one year’s reliability indices and the next year. 

However, because the reliability indices are calculated monthly, the number of 

months in this dataset for each MA is only 46, and referring back to figure 5.4, it can be 

seen that for moderate to large (using the ρ=0.5  curve) correlations the number of paired 

data points needed to attain a confidence interval of 0.10 is approximately 850. While 

confidence intervals for an n of 46 would be approximately 0.45 for the adjusted indices 

and 0.55 for the unadjusted indices. figure 5.13 shows the correlations and confidence 

intervals for Monthly SAIFI. 
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Figure 5.13. Pre and Post Adjustment ρ by MA for SAIFI for 46 Months with 95% 

Confidence Intervals 

It can be seen that, although there is a consistent improvement in ρ, such large 

confidence intervals overlap not only each other, but also the correlations themselves, so 

that the correlations cannot be used for comparison. As n goes down, the confidence 

intervals increase rapidly, so this type of analysis can produce erroneous results if 
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performed with a smaller n than is required to attain confidence intervals that do not 

overlap. 

5.6 Assessment and Limitations  

 The limitations of this method can be attributed to the bilateral nature of the 

analysis and of the data required. Because this method compares one year to another by 

finding outliers in the monthly data, the averaging of many years’ weather and 

interruption data would obscure the very outliers that this method depends on, so 

comparing a multi-year average could not be done by averaging the raw data. In addition, 

a multi-year analysis of reliability trending could not be done because each year is 

normalized to only the previous year’s raw data rather than its own normalized data. 

However, both of these types of analysis could be done by establishing a baseline year for 

normalization and averaging or trending the following years’ normalized reliability 

indices. 

The weather data used is generated by ASOSs located at airports around the 

country. Although ASOSs are the most prevalent type of weather station available 

publicly, there are other types available. However, not every locale will have an available 

weather station and only the ASOSs have the range of data used in this analysis. This 

limitation can be overcome by installing dedicated weather stations in the area of interest. 

 If a recording of a single month’s behavior of a power system and the operational 

and environmental conditions were taken, and was repeated endlessly without any change 

in the operational or environmental conditions, then the behavior of the system for any 

month would have a one-to-one correlation to the first month’s behavior. As changes in 

the operational or environmental conditions were introduced, that correlation would be 
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reduced. However, by accounting for some of those changes and adjusting the later 

behavior of the system, the correlation with the first, or baseline, month would be brought 

closer to the initial one-to-one.  

The proposed method has been shown to consistently and positively improve the 

correlations between the present year’s reliability measures and the previous year’s 

reliability measures. Since the adjustments were done solely on the basis of daily weather 

values, accepting the logic in the above argument, it can be concluded that at least some 

part of the effects of weather on the reliability measures N, CI and CMI have been 

accounted for, and that the measures have been normalized for weather. Because the 

reliability measures have been normalized for common weather conditions, and reliability 

indices are calculated from these measures, it can be concluded that the reliability indices 

have been normalized as well. 

Several aspects of the future work focus on the refinement of the accuracy by 

which interruptions are captured for adjustment. It is expected that many of the 

interruptions that have been captured for the analysis that has been presented, are not 

associated with the weather. This could be due in part to the fact that the daily weather 

values represent maximums and totals in part of the fact that some of the interruptions 

captured are due to causes that are not sensitive to the weather. It can be concluded from 

this that the adjustments may be significantly lower than what is needed to account for all 

of the variations in the weather. 

The interruption data used for the analysis presented in this document includes all 

interruption causes. In all probability, however, not all interruption causes are sensitive to 

weather, and some, such as animal activity, may have negative correlations. For this 
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reason, this method will be applied to the same datasets as used here, except the data will 

be segmented by an interruption cause. 

  The results of adjusting reliability measures by cause codes and then combining 

for a total adjustment are expected to provide normalization that is more accurate. As a 

secondary benefit, the ability to identifying those causes that are most sensitive to the 

weather will be available. Temperature data was not used in this analysis, although it has 

been shown to have a definable relation to the number of interruptions [45]. The 

inclusion of additional weather variables, such as snow and ice, will have to be performed 

when data from a utility where these conditions occur becomes available. 

Because the weather data used was collected by ASOSs that were constructed for 

the FAA, the data is not always centrally located within an MA, thereby reducing its 

accuracy. SG has been installing dedicated weather stations in locations central to their 

MAs. When sufficient historical data has been collected, trials of this method will be 

performed using that data. The use of SGs weather data will improve the geographical 

reference of the weather data. 

     Although the results shown above are encouraging, further research needs to be 

done to determine the optimal outlier thresholds, additional variables that should be 

included, and to verify that the model produces consistent results through repeated 

simulations using different data sets. A method of normalizing the reliability indices 

between systems will be developed employing the models used above. Additional 

variables will be determined that will address the variations in the climate that different 

systems experience.  
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 In the following chapters, we would try to calculate the availability of the system 

configured with smart grid technologies including renewable distributed generation. This 

is a unique situation because smart grid applications are taking place as we write this 

document. Research of such kind has never been explored due to current implementation 

of changes to the existing grid.



www.manaraa.com

109                                                                                               

 

 

 

 

CHAPTER 6:  MODELING METHODS FOR SMART GRIDS 

 

The smart grid technologies are expected to change the fundamental design and 

operating requirements of the electric distribution system. A number of topics to 

understand and analyze this issue have been identified. They can be grouped in the 

following categories [60]: 

• The need for current analysis tools to evolve and address a new, more interactive 

distribution system of the future. 

• Change and upgrade to distribution engineering tools to simplify their use and 

more efficiently handle distributed and renewable-generation-related issues. 

• Develop new analytical methods and related tools to determine the effects of 

high-penetration distributed generation on capacity limits. 

• Develop cost and benefit evaluation tools that better define the relationship of 

distributed resources to power system operations and dispatching. 

• Identify and document modeling and specification requirements for smart grid 

interconnection equipment.   

The primary engineering tools are power flow and fault-current studies. A power 

flow computes steady state voltages and current of the systems ensuring that the system 

will meet important criteria such as equipment loading, voltage drops and system losses. 

While the power flow modeling can predict the electrical properties of smart grid, 
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reliability modeling is predicting the availability and interruption of such a system. In 

general, smart grid engineering tasks can be divided into planning and design stages [61]. 

The planning function is to identify system needs and limitations, to propose projects, to 

resolve the issue, and to gain approval for projects. The design function takes a project 

from concept to realization in a safe, efficient and cost-effective manner. Primary 

planning functions are: 

• Load flow 

• Reliability assessment 

• Distribution impacts screening 

• Installation database management 

• Assessment of grid-level impacts 

Reliability assessment is an ever evolving issue of increasing importance. 

Planning function that enables reliability modeling are [62]:  

• Design new system to meet reliability target 

• Identify reliability problems on existing systems  

• Design system that can offer different levels of reliability  

In this chapter we introduce modeling techniques and methods for analysis of 

smart grid reliability. 

6.1 System Modeling and Analysis 

Reliability of the power system has been of great interest since the early days of 

the establishment of the power system structure. There are many reliability techniques 

used in power system analysis. With the introduction of smart grid technologies to the 

power systems, the previously developed techniques and models, cannot be used for 
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reliability analysis, because of the new dynamics. To analyze smart grid new methods 

need to be developed. The base methods that we will be using for the development of the 

new method will be introduced here.  

6.1.1 Markov Modeling of Smart Grid  

 Markov modeling is a method based on the system states and transitions between 

these states. Two assumptions are made for Markov models:  

• The system is memory less, which means that the future probability of events is 

only a function of the existing state, disregarding what has happen prior the 

system entering this current state.  

• The system probability between the states is constant. The probabilities are not a 

function of time. 

Markov modeling can be either discrete or continuous. The discrete Markov 

modeling is called the Discrete Markov Chain, while the continuous is called a 

Continuous Markov Process [39]. In this research we are modeling smart grid reliability 

with a Continuous Markov Process.   

 A Markov Process is described by the set of states and transition characteristics 

between these states. The state transitions in a Markov Process occur continuously. 

Instead of state probabilities, Markov Processes use state transition rates. This is very 

suitable in the application of smart grid reliability, because the failure rates of the smart 

grid components are equivalent to the state transition rates. In order to be able to use 

Markov modeling, the failures of the smart grid components’ equipment are assumed to 

be exponentially distributed, so the failure rates are constant. Also the other values such 

as: switching rate and repair rate are within exponential distributions. The failure rates, 
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the switching rates and the repair rates are a reciprocal of the Mean Time to Fail (MTTF), 

Mean Time to Switch (MTTS) and Mean Time to Repair (MTTR).    

MTTF
1

=λ    ; failure rate 

MTTS
1

=σ    ; switch rate 

                                                 MTTR
1

=μ      ; repair rate      (6.1) 

 Markov modeling can be used in a general form that is applicable to any size and 

complexity. The state probabilities or state transition rates can be computed using matrix 

differential equations, which can then be constructed using the following rule [55]. 

( ) ( )tp
dt

tdp
i

i
⋅

=   = (inflow to state i)-(outflow from state i)   

 

 
(6.2)

 

∑
≠
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∑
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ij

ipjsatetoistatefromtransitionofrate )(

Where   = probability of system state i at time t. Equation (6.2) can be written in 

matrix form: 

( )tpi

⋅

Tpp =
•

   (6.3) 

The solution of this vector differential equation is:  

( ) Ate0ptp =     (6.4) 

where  a vector of initial conditions of all states. The exponential equation (6.4) 

absolutely and uniformly converges in a finite time interval [64]. Common practice is to 

=0p
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assume that the state where all components are UP with a unity probability while the 

others have zero probability 
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∞
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 In our case, we are interested in the final value of the state probabilities. In this 

case, derivatives of the equation (6.3) will be zero, so we will have a system of algebraic 

equations: 

Tp0 =        (6.6) 

Determinant of is zero, which means that the equations are not linearly independent. 

However, we can discard one of the equations and substitute the equation 

T

1p
n

1i
i =∑

=

    (6.7) 

Since we know that the sum of the state probabilities is a certainty [55]. We can 

write the transition matrix in the form: 
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      (6.8) 

The off-diagonal elements of are the failure rate and repair rates that represent 

the transitions between the states of the system. The diagonal elements represent the 

transitions out of the states with a negative sign. If we substitute equation (6.7) for the nth 

-row of the  matrix, we will get a new equation for the transition matrix : 

T

T
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We can write the new steady-state equation as:  
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   (6.10) 

where the right hand side b is no longer zero. The final solution of the steady state 

condition is:  

bTp -1
n=       (6.11) 

which will give a probability of every state in the system.  

 6.1.2 Modeling of the Smart Grid with a Boolean Logic Driven Markov Process 

(BDMP) 

Smart grid will allow current electrical grid to better incorporate renewable 

energy sources such as wind and solar power, back-up distribution generators and 

advanced energy storage systems. Reliability modeling of smart grid raises difficulties 

due to dynamic reconfigurations of the system. The problem can be modeled using Monte 

Carlo simulations, but obtaining good precisions is very time consuming when the system 

is large and dynamic [66, 67, 68]. To solve the modeling problems, we will use new 

formalism which combines the Boolean logic of Fault tree technique and Markov Process 

[69, 70, 71]. This modeling approach has advantages over conventional models because it 

allows complex dynamic models to be defined and still remain easily readable.  
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The purpose of BDMPs is to provide a new graphic representation of fault trees, 

augmented only by a new kind of link, represented by dotted arrows. This will enable us 

to combine conventional fault trees and Markov processes in a completely new way. The 

BDMPs drastically reduce combinatorial problems in operational applications. From a 

mathematical point of view, a BDMP is a way of defining a global Markov process which 

is interacting in a given manner. The definition of BDMP is:  

• It is basically a Markov process with two “modes”, the components that are 

required and the components that is in standby. The modes can be different in 

some cases. Obviously, the system can have only one mode.   

• At any time the choice of the mode of one Markov process depends on the value 

of the Boolean function of the other processes.  

A BDMP consists of a: multi-top coherent fault tree, a set of triggers, and a set of 

triggered Markov processes. A trigger is represented graphically with a dotted line in 

figure 6.1. The first element of a trigger is called its origin, and the second element is 

called target. Two triggers must have the same target. This means that it is necessary to 

create an additional gate G1 in figure 6.1, whose function is only to define the origin of 

the trigger. The basic events in the figure 6.1 are e1, e2, e3, and e4. There is only one 

trigger from G1 to G2 [69].  
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Figure 6.1. BDMP with one Trigger 

In figures 6.2, 6.3, and 6.4 the BDMP is presented along with a Markov model. 
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Figure 6.2. Standby System 
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Figure 6.3. BDMP Representation of the System in Figure 6.2 
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6.1.3 Markov Modeling of Smart Grid Under Variable Weather Condition 

 The failure rates of the smart grid components located in relatively fixed 

environments can be considered to be a constant during the useful life period. For 

transmission lines and other outdoor components, the environment is not a constant and 

can have a considerable effect upon their failure rates. These two states have a fluctuating 

environment covering normal and stormy weather with assumed exponential distribution

functions. With these assumptions, the Markov app

with a two state failure environment [72, 

To use this approach we have to define:  

• μλ,    = normal weather failure and repair rates    

 SS μλ ,    = stormy weather failure and repair rates  

S
m 1
=    where S is expected duration of stormy weather 

• 
N

   where N is expected duration of normal weather n 1
=
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The state space diagram for the Markov model with one component and variable 

weather conditions is shown in Figure 6.5 

         State 0
Normal Weather
       System in 
       Operation

         State 2
Normal Weather
       System 
       Failed

         State 1
Stormy Weather
       System in 
       Operation

         State 3
eather

       System 
       Failed

Stormy W

m n m n

s

s

Figure 6.5. Single Unit State Space Diagram 

Differential equations for this diagram in matrix forms are: 
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The steady sate probabilities can be found from the matrix efined
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For this system:  

119                                                                                               

 

P( Syst

d 

r 

le 

 

. The BDMP modeling approach offers 

dvantages over conventional models because it allows complex dynamic models to be 

defined under variable weather conditions.  

 

 

 

em Operating) = 10 PP + , availability 

P( System Failed) = 32 PP + , unavailability 

Implementation of smart grid technologies into the power system creates a 

completely new structure, the smart grid. Evaluations and analysis of smart grid 

reliability with dynamic reconfiguration and variable weather conditions with existing 

analytical tools and methods is presently not possible, so the new modeling tools and 

techniques must be developed. The goal can be achieved by formulating a new metho

which combines techniques used for analysis of dynamic systems and techniques used fo

analysis of the power system with variable weather conditions. We developed a new 

method called the Variable Weather Boolean Logic Driven Markov Process or Variab

Weather BDMP. This innovation combines two modeling techniques: Markov modeling

and modeling of variable weather conditions

a
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7.  SMART GRID MODELING AND ANALYSIS 

The smart grid can offer substantial benefits through the integration of different 

technologies such as, renewable energy, storage batteries, power and control electronics.  
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Figure 7.1. Smart Grid Single Line Diagram 

A smart grid brings better operation of a power system in terms of power losses 

and reliability. In this section, we will analyze the smart grid shown in Figure 7.1, under 
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variable weather conditions. We will use methods described in Chapter 6 (Boolean Logic 

Driven Markov Process (BDMP) under variable weather condition), in our case of 

normal weather and stormy weather. In the main smart grid system, we have several 

subsystems: System with Distribution Generator, System with Battery Storage and 

Photovoltaic, System with Wind Generator and Battery Storage, and Static Transfer 

Switch. 

 The reliability of all subsystems will be analyzed separately. The systems will be 

analyzed in many ways, such as: with no influence of weather, no smart grid elements, 

with smart grid elements and normal weather, and with the smart grid elements and 

stormy weather. As for the reliability indices, we will consider availability and 

unavailability of the power supply to the particular consumer, industrial, commercial or 

residential.  

7.1 System with Distributed Generator (DG) 

Distributed Generators (DG) can have an influence on the systems reliability. 

There are many technologies used for DG, including renewable energy (wind powered 

induction generators, photovoltaic, small hydro), gas turbine driven synchronous 

generators, fuel cells and others. The system we considered consists of:  

• L – Overhead transmissions line  

• T- Power Transformer  

• DG- Distribution Generator  

• Load  

 Here we are focusing on the most common applications for example, backup 

generation, used in hospitals, shopping centers, etc. The basic connection is shown in 
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Figure 7.2. The Distribution Generator remains offline during normal operation, and is 

started if the utility supply is interrupted in order to feed the critical load.  

 

Figure 7.2. System with Distribution Generator (DG) Single Line Diagram 

7.1.1. System with no DG and no Influence of Weather  

Parameter values for a Markov Model of a system with no DG and no weather 

conditions: 

• ( )hryrλL /0000517.0/5.0=          

• )hr        (MTTRyrμL 4/25.0 ==

• )hr          (yrλT /00000388.0/34.0=

•     ( )hrMTTRyrμT 60/0167.0 ==
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The state space diagram is shown in Figure 7.3 
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Figure 7.3. State Space Diagram for System with no DG no Weather Conditions 

Differential equations for this diagram in matrix form are: 
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    (7.1) 

The steady sate probabilities can be found by solving equation (7.2): 
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    (7.3) 

For this system:  

P( Availability of Power Supply) = = 0.9999684 0P

P(Unavailability of Power Supply)= 321 PPP ++ =0.000316  
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7.1.2 System with no DG and with Normal Weather Conditions 

Parameter values for Markov Models of system with DG and normal weather 

conditions: 

• )hr          ( EyrλL /05561.8/75.0 −=

• )hr        (MTTRyrμL 4/25.0 ==

• )hr          (yrλT /00000388.0/34.0=

•      ( )hrMTTRyrμT 60/0167.0 ==

The system has the same structure as the system with no weather conditions. The 

Markov state space diagram of the system is the same, and so is the transition matrix. The 

solution for the steady state probabilities are:  
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    (7.4) 

For this system:  

P( Availability of Power Supply) = = 0.99952147 0P

P(Unavailability of Power Supply)= 321 PPP ++ =0.000478524 

7.1.3 System with DG and No Influence of Weather  

Parameter values for Markov Model of a system with DG and no weather 

conditions: 

• ( )hryrλL /0000517.0/5.0=          

• )hr        (MTTRyrμL 4/25.0 ==

• )hr          (yrλT /00000388.0/34.0=
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•   ( )hrMTTRyrμT 60/0167.0 ==

•  )hr          (yrλG /00000228.0/2.0=

• ( )hrMTTRyrG 8/125.0 ==μ     

Using BDMP, described in Chapter 6, the state space diagram, Figure 7.4 is:  
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Figure 7.4. State Space Diagram for System with DG No Weather Conditions 

Differential equations for this diagram in matrix forms are: 
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(7.5) 
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The steady sate probabilities can be found by solving equation (7.5) : 
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⎥
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⎥
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E
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    (7.6) 

For this system:  

P( Availability of Power Supply) = 3210 PPPP +++ = 0.999999958 

P(Unavailability of Power Supply)= 54 PP + =4.165E-08  

7.1.4 System with DG and Alternative Weather Conditions, Normal and Stormy 

Weather 

 Parameter values for a Markov Model of the system with DG alternative weather 

conditions are: 

• Normal Weather Conditions 

( hrEyrλL /055616.8/75.0 −= )

)

)

)

         

( hrMTTRyrμL 4/25.0 ==        

( hrEyrλT /058812.3/34.0 −=          

( )hrMTTRyrμT 60/0167.0 ==   

          ( hrEyrλG /0528.2/2.0 −=

( )hrMTTRyrG 8/125.0 ==μ    

hrN 200=   Normal Weather Duration 

005.01
==

N
n    
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• Stormy Weather Conditions 
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)

)

)

( hryrλL /000108447.0/95.0' =          

( hrMTTRyrμL 4/25.0' ==        

( hrEyrλT /052785.6/55.0' −=          

( )hrMTTRyrμ T 60/0167.0' ==   

 ( )hrEyrλ G /0528.2/2.0' −=          

( )hrMTTRyrG 8/125.0' ==μ     

hrS 20=   Stormy Weather Duration 

05.01
==

S
m    

Using the methods described in Chapter 6, the state space diagram, Figure 7.5 is 

developed.  
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 Figure 7.5. State Space Diagram for System with DG and Alternative Weather 

Conditions, Normal, and Stormy Weather 

Differential equations for this diagram in matrix forms are: 
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Where  and    are matrices:   1D 2D
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The steady sate probabilities can be found by solving equation (7.7): 
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For the system:  

• Normal Weather  

P( Availability of Power Supply) = 3210 PPPP +++ = 0.999999941 

P(Unavailability of Power Supply)= 54 PP + =5.894E-08  

• Stormy  Weather  

P(Availability of Power Supply) = 3210 '''' PPPP +++ = 0.999999894 

P(Unavailability of Power Supply)= 54 '' PP + =1.06055E-07 

7.2 System with Photovoltaic (PV) and Energy Storage System  

Photovoltaic systems (PV) deliver available renewable resources to a larger 

energy market. It improves the economics of transmission and the distribution of 

electrical energy. Today’s challenge is that the significant deployment of PV energy 

requires modernization of the electrical energy distribution grid to a new generation smart 

grid.  

The distribution PV systems operate interactively with available solar resources, 

varying conditions on the grid, and other local resources, including load control and 

future generation and storage resources. However, the solar energy has drawbacks since it 

does not provide a constant supply of energy. There are days where the sun just doesn’t 

come out. When connected to a battery storage system, the energy can be stored and used 

as needed. The cycle of charging and discharging will repeat itself daily, and the 

consumer will only have to pay for the initial installation of the system, after that, the 

energy is literally free. 
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By storing energy, utilities can eliminate the need for a peaking generator that will 

only be used when demand is at its highest, and whose capacity will never be realized. In 

addition, by turning on extra generators, they overshoot the market demand. Consumers 

who live in remote areas that are not connected to a distribution system can rely on 

renewable energy to supply them.  

The most obvious uses of an Energy Storage System are for better efficiency of 

the smart grid and for capital gain. Perhaps their biggest advantage is the ability to 

regulate all the energy that is being produced. By practically eliminating losses through 

storage and then releasing the required amount during peak times, the system can use all 

the energy effectively. For this study we are considering individual residential consumers 

with the following structure, Figure 7.6: 

• L – Overhead transmissions line  

• T- Power Transformer  

• Pv- Photovoltaic   

• B- Battery (Energy Storage System) 

• S – Residential Consumer  
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Figure 7.6. System with PV and Energy Storage System (B), Single Line Diagram 

7.2.1 System with no PV and Battery 

 The system will consist only of a Line and Transformer. The analysis and the 

results are the same as for the system with the DG that we analyzed in sections 7.1.1 and 

7.12.  

7.2.2 System with PV and Energy Storage System and no Influence of Weather  

Parameter values for a Markov Model for a system with PV and Energy Storage 

System and no weather conditions are: 

• ( )hryrλL /0000517.0/5.0=         

•      ( )hrMTTRyrμL 4/25.0 ==

• )hr        (yrλT /00000388.0/34.0=

•   ( )hrMTTRyrμT 60/0167.0 ==
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•  )hr        (yrλPv /00000228.0/02.0=

•     ( )hrMTTRyrμPv 4/25.0 ==

• )hr         (yrλB /0000114.0/1.0=

•    ( )hrMTTRyrμB 5.2/4.0 ==

Using BDMP, described in Chapter 6, the state space diagram, figure 7.7, is:  
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Figure 7.7. State Space Diagram for System with PV and Energy Storage System No 

Weather Conditions 
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Differential equations for this diagram in matrix forms are: 
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(7.10) 

  

The steady sate probabilities can be found by solving equation (7.10): 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−
−
−

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1642064.5
1284608.4
1306725.6
1493737.5
0949848.6
1077231.1

0730575.5
0863922.6

002322832.0
000227728.0
997448836.0

10

9

8

7

6

5

4

3

2

1

0

E
E
E
E
E
E
E

E

P
P
P
P
P
P
P
P
P
P
P

    (7.11) 
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For this system:  

P (Availability of Power Supply) = 94210 PPPPP ++++ = 0.9999999269 

P (Unavailability of Power Supply)= 1087653 PPPPPP +++++ =7.3000685E-08  

7.2.3 System with PV and Energy Storage System, and Alternative Weather 

Conditions, Normal and Stormy Weather 

Parameter values for a Markov Model of a system with PV and Energy Storage 

System and alternative weather conditions are: 

• Normal Weather Conditions 

( hrEyrλL /055616.8/75.0 )−=          

( )hrMTTRyrμL 4/25.0 ==        

( hrEyrλT /058812.3/34.0 )−=          

( )hrMTTRyrμT 60/0167.0 ==   

( hryrλPv /00000228.0/08.0= )          

( )hrMTTRyrμPv 4/25.0 ==    

( hryrλB /0000114.0/1.0= )         

( )hrMTTRyrμB 5.2/4.0 ==    

     Normal Weather Duration hrN 200=

005.01
==

N
n     

• Stormy Weather Conditions 

( hryrλL /000108447.0/95.0' = )          

( )hrMTTRyrμL 6/1666.0' ==        
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)( hrEyrλT /052785.6/55.0' −=          

( )hrMTTRyrμ T 60/0167.0' ==   

            ( hryrλ Pv /00001415.0/1.0' = )

( )hrMTTRyrμ Pv 6/1666.0' ==    

( hryrλ B /0000114.0/1.0' = )         

( )hrMTTRyrμ B 4/25.0' ==    

hrS 20=   Stormy Weather Duration 

05.01
==

S
m    

 

 

Differential equations for this diagram in matrix forms are: 
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Using methods described in Chapter 6, the state space diagram, figure 7.8, is:  
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Figure 7.8. State Space Diagram for System with PV and Energy Storage System and 

Alternative Weather Conditions, Normal, and Stormy Weather 
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In equation (7.12),   and    are matrices:   1D 2D
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The steady sate probabilities can be found by solving equation (7.12): 

Normal Weather                                   Stormy Weather  
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For the system:  

• Normal Weather  

P( Availability of Power Supply) = 94210 PPPPP ++++ = 0.999999924 

P(Unavailability of Power Supply)= 1087653 PPPPPP +++++ =7.645E-08  

• Stormy  Weather  

P( Availability of Power Supply) = 94210 ''''' PPPPP ++++ = 0.999999792 

P(Unavailability of Power Supply)= 1087653 '''''' PPPPPP +++++ =2.028E-07  

7.3. System with Wind Generator and Energy Storage System  

140                                                                                               

 

 Wind power is currently supplying a noticeable amount of electricity around the 

world. In some countries, about 20% of electrical loads are supplied from the wind 

generations. Wind generated power is an important part of the smart grid. Some question 

whether wind power, being a variable resource (meaning it generates electricity when the 

wind is blowing, not on demand) can be relied upon as part of a system that provides 

reliable electricity to consumers without interruption. Wind generated power today with 

the smart grid technologies can readily be accommodated into power electric system 

operations reliably and economically. As the speed of the wind changes, so does the 

electrical output from a wind turbine. The Energy Storage System, batteries are needed to 

store power and smooth out fluctuations in the power supply. In the future, through 

advances in technologies such as batteries and compressed air, energy storage may 

become cost-effective. The prospect of plug-in hybrid electric vehicles holds great 

promise because the expense of their batteries would be covered by their fuel cost savings 

and they could provide many megawatts of storage for the overall electrical power 

system. When wind isn't blowing, reliable electrical service is maintained by turning up 
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the output of other power source to the smart grid system. Wind behaves similar to load 

in that it is "variable," meaning its output rises and falls within hourly and daily time 

periods; and it is "non-dispatchable," meaning its output can be controlled only to a 

limited extent.  

Wind turbine system reliability is a critical factor in the success of a wind energy 

project. A wind turbines reliability is dependent largely on the particular machine model, 

how well it is designed, and the quality of manufacture. Reliability also varies with the 

operating environment, as it is the machine’s reaction to the wind environment that 

determines the loading imposed on the components. The variety of potential component 

failures - gearbox bearings, generator bearings and windings, power electronics, gearbox 

torque arms, pitch drive electronics – indicate that the operating conditions and load 

conditions for a large wind turbine and not completely understood. 

For this study, we are considering individual industrial consumers supplied by 

Wind Generations and Energy Storage System with the following structure, figure 7.9: 

• L – Overhead transmissions line  

• T- Power Transformer  

• Wg- Wind Generator   

• B- Battery (Energy Storage System) 

• Industrial Consumer 
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Figure 7.9. System with Wind Generator (Wg) and Energy Storage System (B), Single 

Line Diagram 

7.3.1 System with no Wind Generator and Energy Storage System (Battery)  

 The system will consist only of a Line and Transformer. The analysis and the 

results will be the same as for the system with the DG, we analyzed in 7.1.1 and 7.12.  

7.3.2 System with Wind Generator and no Influence of Weather  

Parameter values for Markov Model for system with Wind Generator and Energy 

Storage System and no weather conditions: 

• ( )hryrλL /0000517.0/5.0=          

• )hr        (MTTRyrμL 4/25.0 ==
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• )hr          (yrλT /00000388.0/34.0=

•   ( )hrMTTRyrμT 60/0167.0 ==

•  )hr          (yrλG /000005707.0/05.0=

• ( )hrMTTRyrμPv 5/2.0 ==    

• )hr          (yrλB /0000114.0/1.0=

•    ( )hrMTTRyrμB 5.2/4.0 ==

Using BDMP, described in Chapter 6, the state space diagram, figure 7.10, is:  

  T  B  B

 L   L

  B   B

  1   1

LTBWg LTBWg

  1  2

LTBWg

  0  3

 LT

  1  0

LTBWg

  0  5

LTBWg

  1  4
  T

  L  L

  T  T   L   T B
  L  PV

  PV PV

  7   0

LTGWg LTGWg

  0  8

LTGWg

  1  9

 LTGWg

  0  6

LTGWg

  0  10
  B

  PV

  PV  T   L
  L   T

  T

  PV

  B  B  PV  PV

 

Figure 7.10. State Space Diagram for System with Wg and Energy Storage System no 

Weather Conditions 

Differential equations for this diagram in matrix forms are: 
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The steady sate probabilities can be found by solving equation (7.16): 
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     (7.17) 

For this system:  

P( Availability of Power Supply) = 94210 PPPPP ++++ =  

P(Unavailability of Power Supply)= 1087653 PPPPPP +++++ = 7.31259E-08  
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7.3.3 System with Wind Generator and Energy Storage System, and Alternative 

Weather Conditions Normal and Stormy Weather 

Parameter values for Markov Model of system with Wind Generator and Energy 

Storage System and alternative weather conditions are: 
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)

• Normal Weather Conditions 

( hrEyrλL /055616.8/75.0 −=          

( )hrMTTRyrμL 4/25.0 ==        

( hrEyrλT /058812.3/34.0 )−=          

( )hrMTTRyrμT 60/0167.0 ==   

( hryrλWg /00001027.0/09.0= )          

( )hrMTTRyrμWg 7/142.0 ==    

( hryrλB /0000114.0/1.0= )         

( )hrMTTRyrμB 5.2/4.0 ==    

     Normal Weather Duration hrN 200=

005.01
==

N
n    
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)

• Stormy Weather Conditions 

( hryrλL /000108447.0/95.0' =          

( )hrMTTRyrμL 4/25.0' ==        

( hrEyrλT /052785.6/55.0' −= )          

( )hrMTTRyrμT 60/0167.0 ==   

            ( hryrλ Wg /0000228.0/2.0' = )

( )hrMTTRyrμ Wg 10/1.0' ==    

( hryrλB /0000114.0/1.0= )         

( )hrMTTRyrμB 5.2/4.0 ==    

hrS 20=   Stormy Weather Duration 

05.01
==

S
m    

Differential equations for this diagram in matrix forms are: 
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[ ]

[ ] ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−=

2

1
'

DIm

InD
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Using methods described in Chapter 6, the state space diagram, figure 7.11, is given next.  
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Figure 7.11. State Space Diagram for System with PV and Energy Storage System and 

Alternative Weather Conditions, Normal, and Stormy Weather 
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In the equation (7.18),   and    are matrices:   1D 2D
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The steady sate probabilities can be found by solving equation (7.18): 
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For the system:  

• Normal Weather  

P( Availability of Power Supply) = 94210 PPPPP ++++ = 0.999999923 

P(Unavailability of Power Supply)= 108763 PPPPP ++++ =7.66981E-08  

• Stormy  Weather  

P( Availability of Power Supply) = 94210 ''''' PPPPP ++++ = 0.999999796 

P(Unavailability of Power Supply)= 108763 ''''' PPPPP ++++ =2.03587E-07  

Reliability of the smart grid under normal and stormy weather conditions is 

analyzed with a new developed method, VW-BDMP (figure 7.1). The analyzed smart 

grid consists of several subsystems: System with Distribution Generator, System with 

Battery Storage and Photovoltaic, System with Wind Generator and Battery Storage. The 

reliability of all subsystems is analyzed separately. The subsystems will be analyzed with 

no influence of weather, with no smart grid elements, with smart grid elements and 

normal weather, and with the smart grid elements and stormy weather. For reliability, 
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indices considered are availability and unavailability of the power supply to the particular 

consumer--industrial, commercial or residential. The results show improvement of the 

reliability indices with the smart grid technologies and also show the influence of the 

weather. The weather expected has a negative influence on the reliability of the smart 

grid. 
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CHAPTER 8: DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 

FOR FURTHER RESEARCH 

 

 Smart grid engineering is divided into two stages, planning, and design. The 

planning stage is for identifying system needs and limitations, to propose projects, to 

resolve issues, and to obtain approvals for projects. The design stage takes a project from 

concept to the final realization. Smart grid technologies are expected to change 

fundamental design and operating requirements of the electric power system. The 

primary engineering tools for smart grid analysis and design are power flow and fault-

current studies. Power flow computes steady state voltages and currents of  systems 

ensuring that the system will meet criteria of equipment loading, voltage drops, and 

system losses. Although power flow modeling can predict electrical properties of the 

smart grid, reliability modeling predicts the availability and interruptions of such a 

system. A Smart grid will allow current power electrical systems to incorporate better 

renewable energy sources such as wind and solar power, back-up distribution generators 

and energy storage systems. 

8.1 Discussions and Conclusions 

Reliability of the smart grid is one of the most important areas of reliability theory 

application. Random failures are certain to occur from time to time, especially when 

elements of weather or other causes present hazards that the power system was not 
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designed to withstand. Failures also happen due to poor maintenance, aging, improper 

processes and multiple other explanations. Reliability methods provide important 

analytical tools that can be used to evaluate and compare smart grid design and 

performance since each component has a unique characteristic. Models should be as 

simple as possible, but they need to represent all features that are critical to systems 

reliability. Reliability parameters vary from component to component or from situation to 

situation. Component reliability data are one of the most important parameters of the 

smart grid reliability assessment. This research used reliable information based on 

historical utility data, manufacturer test data, documents and references from professional 

organizations, and other technical conferences and journal proceedings. Electrical 

equipment reliability data are usually obtained from surveys of individual industrial 

equipment failure reports. Collection of reliability data is a continuous process since it is 

constantly updated.  

The smart grid reliability indices are used to quantify sustained interruptions. 

Short duration outages for some customers, such as hospitals and large industrial 

customers, can result in complex systems shutting down. In many cases, these customers 

have installed backup generation or other means of addressing short-duration outages. In 

particular, it is these types of outages that would benefit from the presence of distributed 

generation and energy storage. Therefore, a reliability index should not only quantify 

enhanced reliability for sustained interruptions, but also for short-duration outages.  

Earlier research work focused on modeling the effects of extreme weather 

conditions on power distribution systems, and on specific weather parameters causing 

specific faults in the distribution system. Various methods are there to study extreme 
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weather conditions such as tornadoes and hurricanes. There are also individual models 

for interruption causes such as equipment failure. A study of interruptions as a function 

of common weather has not been done in depth thus far. This study bridges that gap. This 

type of research was not earlier possible for multiple reasons; the weather recording 

system has improved recently, the communication network has improved, only lately 

have smart grid applications and technologies been introduced to the old grid network. 

These data are required to conduct such research, and was not available earlier. 

         This study has shown that there is a hidden weather component in most of the 

causes of interruptions. These interruptions and weather conditions are studied 

probabilistically and a novel, predictive method has been developed on that basis. A 

theoretical model based on variable weather conditions is used to predict power 

distribution interruptions, while immediate weather conditions are used to analyze 

interruption risk assessment  

  This study creates a better understanding of the relationship between common 

weather conditions and the number of interruptions, which in turn will open a completely 

new spectrum of research on reliability of power distribution systems. This study did not 

only develop a novel combined theoretical model regarding the effects of common 

weather (while incorporating existing, relevant ones), but applied them by solving the 

problem of predicting the daily number of interruptions. Furthermore, risk assessment is a 

strong tool that can be used by management to achieve maximum efficiency when 

planning the amount of long and short-term manpower and equipment inventory. This 

predictor is a patent property of the University of South Florida, Tampa, Fl – USA. 
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     Variability of reliability (and reliability indices) from system to system or from 

year to year within a system (due to circumstances beyond the control of the system 

operator), are recognized as a problem that interferes with a fair assessment of a system’s 

reliability. The development of a method for normalization of reliability indices for 

weather is a recognized need and this research suggests a solution. 

 Dynamic reconfigurations of the smart grid and variable weather conditions create 

difficulties in reliability modeling and analysis. To overcome these obstacles, a unique 

method was developed, which combines three modeling techniques: Markov modeling, 

Boolean Logic Driven Markov Process (BDMP) and Modeling of a variable weather 

condition. This modeling approach has advantages over conventional models because it 

allows complex dynamic models to be defined and still remain easily readable.  

Markov modeling is a method based on system states and the transition between 

these states. It can be either discrete or continuous. Discrete Markov modeling is called 

Discrete Markov Chain, while continuous is called continuous Markov Processes. This 

research modeled smart grid reliability with a continuous Markov Process. Instead of 

state probabilities, Markov Processes use state transition rates. This is very suitable in  

application of smart grid reliability, because failure rates of  smart grid components are 

equivalent to state transition rates. To use Markov modeling, the failures of smart grid 

components’ equipment are assumed to be exponentially distributed, so the failure rates 

are constant. Also other values such as the switching rate and the repair rate use 

exponential distributions. Failure rates, the switching rates and the repair rates are 

reciprocals of the Mean Time to Fail (MTTF), Mean Time to Switch (MTTS) and Mean 

Time to Repair (MTTR).    
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The purpose of BDMPs is to provide a new graphic representation of fault trees, 

augmented only by a new kind of link, which is represented by dotted arrows. This 

enables combined conventional fault trees and Markov processes in a completely new 

way. BDMPs dramatically reduce combinatorial problems in operational applications. 

From a mathematical point of view, a BDMP is made of a multi-top coherent fault tree, a 

set of triggers and a set of triggered Markov processes. 

  Systems were analyzed with a distribution generator, a system with a photovoltaic 

source and energy storage, and a system with a wind generator and energy storage. The 

systems were all analyzed with no outside influence of weather and any smart grid 

elements; with smart grid elements and normal weather; and smart grid elements and 

stormy weather. To view reliability of a smart grid system, availability and unavailability 

of power supply to the particular consumer, industrial, commercial or residential was 

studied. The expected results were obtained. The highest unavailability of the system is 

with no smart grid elements including an influence of weather, following the system with 

no smart grid elements and no weather. The system, with the smart grid elements and 

normal weather, has the smallest unavailability, followed by the system with the smart 

grid and the stormy weather. While availability is in reverse order, the highest availability 

is the system with smart grid elements and normal weather, followed by the system with 

the smart grid elements and stormy weather. In addition, there is a noticeable 

improvement of availability/unavailability of systems with smart grid elements.   
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The main contributions as discussed earlier can be summarized into a list given 

below: 

• A Method for modeling smart grid dynamic reconfigurations under variable 

weather condition combining the three modeling techniques (Markov modeling, 

Boolean Logic Driven Markov Process (BDMP) and the modeling of variable 

weather conditions).  

• Developed a method of predicting power distribution interruptions in a given 

region based on common weather conditions while assessing the risk of 

interruptions on immediate weather conditions. Using daily and hourly weather 

data, the method predicts the number of daily or by-shift interruptions. 

• A method was developed for normalizing the reliability indices for common 

weather conditions. The methods commonly used are based on changes and 

comparisons of present and past performance. The developed method diminishes 

the impact of variable weather conditions and makes comparisons that allow for 

more accurate determination of reliability performance. 

• Developed the predictor method that will reduce downtime of power interruptions 

by proper distribution of the service work force. The model offers an economical 

tool with negligible maintenance costs to utilities and improves its Systems 

Average Interruption Frequency Index (SAIFI), while increasing its power 

transmission.   

The goal of this research was to find a new method that can be used for modeling 

the dynamics of the smart grid with variable weather conditions. It is achieved by a 

combination of the techniques mentioned earlier. To show and prove the models,  
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simplified smart grid configurations were used. While the present research goal is 

achieved with the new proposed method on the small-scale system, recommendations for 

future research are to develop an algorithm and software for the large-scale system using 

this developed method.  

8.2 Recommendations for Future Work 

Smart grid applications and technologies are still being implemented to the 

transmission and distribution grid systems. Reliability studies of such systems are still in 

their infancy stage. There are many new things being done on the grid, which is expected 

to improve its efficiency and reliability. There will be many new things to understand and 

incorporate in the reliability study. In such situations, a continuous in-depth reliability 

study is required. It is expected that with the expected improvement in system 

performance, research in the reliability field has to keep pace to provide novel methods 

and tools to understand the modern grid. 

A smart grid consists of a variety of power components such as transformers, 

generators, overhead lines, renewable energy resources, energy storage elements and a 

micro-grid. A smart grid will allow current electricity grids to incorporate better  

renewable energy sources such as wind and solar power, back-up distribution generators 

and advanced energy storage systems. Smart grid technologies are expected to change the 

fundamental design and operating requirements of the electric power system. To 

understand and analyze smart grid impacts on power system operations and design, 

several issues have been identified: 

• Current reliability analysis and modeling tools must evolve to address the 

future’s more interactive power system and to simplify engineering tools to 
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more efficiently handle the smart grid technologies’ related issues. 

• New reliability and other analytical methods/tools are needed to determine 

effects of penetration of smart grid technologies on operation of the power 

system, as well as the resultant effects on power system quality, reliability, 

and availability. 

• Modern reliability tools can help in defining strength of grid to absorb more 

amount of renewable resources that can be installed strategically to serve 

larger number of customers 

• Novel software programs could be developed on the basis of this research to 

bring in like minded customers to use more amount of renewable energy 

resources that would help make our world far better place to live. 
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APPENDIX A: DEFINITIONS AND FORMULAE 
 

The following are the definitions and formulae defined by IEEE (40) for reliability 
studies. 
 
Note: reprinted with permission from  IEEE Std. 1366-2003 IEEE Guide for Electric 
Power Reliability Indices  © 2003 IEEE]*, by IEEE. 
The IEEE disclaims any responsibility or liability resulting from the placement and use in 
the described manner 

 
4. Reliability Indices 
 
4.1 Basic factors 
 
These basic factors specify the data needed to calculate the indices. 
 
i denotes an interruption event 
 
ir          -      Restoration Time for each Interruption Event 
CI        -      Customers Interrupted 
CMI    - Customer Minutes Interrupted 
E  - Event 
T - Total 
IMt - Number of Momentary y Interruptions  
IMg - Number of Momentary g Interruption Events 
Nr         - Number of Interrupted Customers 
N -  Number of Interrupted Customers for each Momentary Interruptions event 

 during the Reporting Periods 
NT        - Total Number of Customers Served for the Areas 
LV        - Connected LVA load Interrupted for each Interruption Event 
LT        - Total Connected LVA Load Served 
CN - Total Number of Customers who have Experienced a Sustained 
  Interruption during the reporting period 
CNT - Total Number of Customers who have Experienced more than π   

Sustained Interruptions and Momentary Interruption Events during the  
Reporting Period 

 
 
 
 
 
 
From  IEEE Std. 1366-2003 IEEE Guide for Electric Power Reliability Indices © 2003 
IEEE*,  by IEEE. All rights reserved. 
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Appendix A (continued) 
π  - Number of Interruptions Experienced by an Individual Customer in the  

Reporting Period 
TMED - Major Event day Identification threshold value 
 
 
4.2  Sustained Interruption Indices 
 
4.2.1  System average interruption frequency index (SAIFI) 
 
The system average interruption frequency index indicates how often the average 
customer experiences a sustained interruption over a predefined period of time. 
Mathematically, this is given in Equation (1)  
 

 SAIFI =  
ServedCustomersofNumber  Total

dInterrupte Customers of Total ∑                     (1)                                                       

 
 
To calculate the index, use equation (2) below: 
 

SAIFI =  
TT

i

N
CI

N
N

=
∑                                                     (2) 

 
4.2.2 System average interruption duration index (SAIDI) 
 
This index indicates the total duration of interruption for the average customer during a 
predefined period of time. It is commonly measured in customer minutes or customer 
hours of interruption. Mathematically, this is given in Equation (3). 
 

SAIDI =
ServedCustomersofNumber  Total

Durationon InterruptiCustomer ∑                    (3) 

 
To calculate the index, use Equation (4) 
 

SAIDI = 
TT

NY

NN
ii CMI
=

∑                                                          (4)  

 
From  IEEE Std. 1366-2003 IEEE Guide for Electric Power Reliability Indices © 2003  
IEEE*,  by IEEE. All rights reserved. 
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Appendix A (continued) 
 
 
 
4.2.3 Customer average interruption during index (CAIDI) 
 
CAIDI represents the average time required to restore service. Mathematically, this is 
given in Equation (5) 
 

CAIDI = 
dInterrupte Customers ofNumber  Total

Duration  onsInterruptiCustomer  ∑             (5) 

 
 
To calculate this index, use Equation (6) 
 

CAIDI = 
SAIFI
SAIDI

=
∑
∑

i

ii

N

NY                                                      (6) 

 
4.2.4 Customer total average interruption duration index (CTAIDI) 
 
 This index represents the total average time in the reporting period that customers who 
actually experienced an interruption were without power. This index is hybrid of CAIDI 
and is similarly calculated except that those customers with multiple interruptions are 
counted only once. Mathematically, this is given in Equation (7) 
 

CTAIDI = 
dInterrupte Customers ofNumber  Total

Durationon InterruptiCustomer  ∑            (7) 

 
To calculate the index, use Equation (8) 
 

CTAIDI = 
CN

iiNT∑                                                                   (8) 

 
Note – Is tallying Total Number of Customers Interrupted, each individual customer 
should only be counted once regardless of times interrupted during the reporting period. 
This applies to 4.2.4 and 4.2.5. 
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Appendix A (continued) 
 
 
4.2.5 Customer average interruption frequency index (CAIFI) 
 
This index gives the average frequency of sustained interruptions for those customers 
experiencing sustained interruptions. The customer is counted once regardless of the 
number of times interrupted for this calculation. Mathematically, this is given in Equation 
(9) 

CAIFI = 
dInterrupte Customers ofNumber  Total
dInterrupte Customers ofNumber  Total∑                 (9) 

 
To calculate the index, use Equation (10)  
 

CAIFI = 
CN

Ni∑                                                                           (10) 

 
 
4.2.6 Average service availability index (ASAI) 
 
The average service availability index represents the fraction of time (often in 
percentage) that a customer has received power during the defined reporting period.  
Mathematically, this is given in Equation (11) 
 

ASAI = 
DemandServiceHoursCustomer 

tyAvailabili Service HoursCustomer                          (11) 

 
To calculate the index, use Equation (12) 
 

ASAI = 
hours/yr) of(Number  

hours/yr) of(Numner  

XN

NrXN

T

iiT ∑−                                                  (12) 

Note- There are 8760 hours in a non-leap year, 8784 hours in a leap year. 
 
4.2.7 Customers experiencing multiple interruptions (CEMIn) 
This index indicates the ration of individual customers experiencing more than n 
sustained interruptions to the total number of customers served.  
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Appendix A (continued) 
 
 
Mathematically, this is given in equation (13) 

CEMIn= ServedCustomersofNumber Total
 onsinterrupti sustained  than more experience that Customers ofNumber  Total n  

(13) 
 
To calculate the index, use Equation (14) 

CEMIn = 
T

nk

N
CN )( 〉                                                                        (14) 

 
Note – This index is often used in a series of calculations with n incremented from a 
value of one to the highest value of interest. 
 
4.3 Load based indices 
 
4.3.1. Average system interruption frequency index (ASIFI) 
 
The calculation of this index is based on load rather than customers affected. ASIFI is 
sometimes used to measure distribution performance in areas that serve relatively few 
customers having relatively large concentrations of load, predominantly 
industrial/commercial customers. Theoretically, in a system with homogeneous load 
distribution, ASIFI would be the same as SAIFI. Mathematically, this is given in 
Equation (15) 
 

ASIFI = 
ServedkVA ConnectedTotal

dInterrupte Load ofkVA  Connected Total ∑                  (15) 

 
To calculate the index use Equation (16) 
 

ASIFI = 
T

i

L
L∑                          (16) 

 
4.3.2 Average system interruption duration index (ASIDI) 
 
The calculation of this index is based on load rather than customers affected. Its use, 
limitations, and philosophy are stated in the ASIFI definition in 4.3.1. Mathematically,  
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Appendix A (continued)  
 
 
this is given in Equation (17). 
 

ASIDI= 
ServedkVA ConnectedTital

dInterrupte Load ofDuration kVA  Connected∑              (17) 

 
To calculate the index, use Equation (18). 
 

ASIDI =  
T

LY

L
ii∑                               (18) 

 
4.4 Other indices (momentary) 
 
4.4.1 Monetary average interruption frequency index (MAIFI) 
 
This index indicates the average frequency of momentary interruptions. Mathematically, 
this is given an Equation (19). 
 

MAIFI = 
ServedCustomersofNumber Total

onInterruptiMomentary Customer  ofNumber  Total ∑   (19) 

 
To calculate this index, use Equation (20) 
 

MAIFI = 
TN

miiNIM∑                                                                            (20) 
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